Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | // SPDX-License-Identifier: GPL-2.0-only /* * This test checks the response of the system clock to frequency * steps made with adjtimex(). The frequency error and stability of * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock * is measured in two intervals following the step. The test fails if * values from the second interval exceed specified limits. * * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com> 2017 */ #include <math.h> #include <stdio.h> #include <sys/timex.h> #include <time.h> #include <unistd.h> #include "../kselftest.h" #define SAMPLES 100 #define SAMPLE_READINGS 10 #define MEAN_SAMPLE_INTERVAL 0.1 #define STEP_INTERVAL 1.0 #define MAX_PRECISION 500e-9 #define MAX_FREQ_ERROR 0.02e-6 #define MAX_STDDEV 50e-9 #ifndef ADJ_SETOFFSET #define ADJ_SETOFFSET 0x0100 #endif struct sample { double offset; double time; }; static time_t mono_raw_base; static time_t mono_base; static long user_hz; static double precision; static double mono_freq_offset; static double diff_timespec(struct timespec *ts1, struct timespec *ts2) { return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9; } static double get_sample(struct sample *sample) { double delay, mindelay = 0.0; struct timespec ts1, ts2, ts3; int i; for (i = 0; i < SAMPLE_READINGS; i++) { clock_gettime(CLOCK_MONOTONIC_RAW, &ts1); clock_gettime(CLOCK_MONOTONIC, &ts2); clock_gettime(CLOCK_MONOTONIC_RAW, &ts3); ts1.tv_sec -= mono_raw_base; ts2.tv_sec -= mono_base; ts3.tv_sec -= mono_raw_base; delay = diff_timespec(&ts3, &ts1); if (delay <= 1e-9) { i--; continue; } if (!i || delay < mindelay) { sample->offset = diff_timespec(&ts2, &ts1); sample->offset -= delay / 2.0; sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9; mindelay = delay; } } return mindelay; } static void reset_ntp_error(void) { struct timex txc; txc.modes = ADJ_SETOFFSET; txc.time.tv_sec = 0; txc.time.tv_usec = 0; if (adjtimex(&txc) < 0) { perror("[FAIL] adjtimex"); ksft_exit_fail(); } } static void set_frequency(double freq) { struct timex txc; int tick_offset; tick_offset = 1e6 * freq / user_hz; txc.modes = ADJ_TICK | ADJ_FREQUENCY; txc.tick = 1000000 / user_hz + tick_offset; txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16); if (adjtimex(&txc) < 0) { perror("[FAIL] adjtimex"); ksft_exit_fail(); } } static void regress(struct sample *samples, int n, double *intercept, double *slope, double *r_stddev, double *r_max) { double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum; int i; x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0; for (i = 0; i < n; i++) { x = samples[i].time; y = samples[i].offset; x_sum += x; y_sum += y; xy_sum += x * y; x2_sum += x * x; } *slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n); *intercept = (y_sum - *slope * x_sum) / n; *r_max = 0.0, r2_sum = 0.0; for (i = 0; i < n; i++) { x = samples[i].time; y = samples[i].offset; r = fabs(x * *slope + *intercept - y); if (*r_max < r) *r_max = r; r2_sum += r * r; } *r_stddev = sqrt(r2_sum / n); } static int run_test(int calibration, double freq_base, double freq_step) { struct sample samples[SAMPLES]; double intercept, slope, stddev1, max1, stddev2, max2; double freq_error1, freq_error2; int i; set_frequency(freq_base); for (i = 0; i < 10; i++) usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10); reset_ntp_error(); set_frequency(freq_base + freq_step); for (i = 0; i < 10; i++) usleep(rand() % 2000000 * STEP_INTERVAL / 10); set_frequency(freq_base); for (i = 0; i < SAMPLES; i++) { usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL); get_sample(&samples[i]); } if (calibration) { regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1); mono_freq_offset = slope; printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n", 1e6 * mono_freq_offset); return 0; } regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1); freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - freq_base; regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope, &stddev2, &max2); freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - freq_base; printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t", 1e6 * freq_step, 1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1, 1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2); if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) { printf("[FAIL]\n"); return 1; } printf("[OK]\n"); return 0; } static void init_test(void) { struct timespec ts; struct sample sample; if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) { perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)"); ksft_exit_fail(); } mono_raw_base = ts.tv_sec; if (clock_gettime(CLOCK_MONOTONIC, &ts)) { perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)"); ksft_exit_fail(); } mono_base = ts.tv_sec; user_hz = sysconf(_SC_CLK_TCK); precision = get_sample(&sample) / 2.0; printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t", 1e9 * precision); if (precision > MAX_PRECISION) ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n", 1e9 * precision, 1e9 * MAX_PRECISION); printf("[OK]\n"); srand(ts.tv_sec ^ ts.tv_nsec); run_test(1, 0.0, 0.0); } int main(int argc, char **argv) { double freq_base, freq_step; int i, j, fails = 0; init_test(); printf("Checking response to frequency step:\n"); printf(" Step 1st interval 2nd interval\n"); printf(" Freq Dev Max Freq Dev Max\n"); for (i = 2; i >= 0; i--) { for (j = 0; j < 5; j++) { freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6; freq_step = 10e-6 * (1 << (6 * i)); fails += run_test(0, freq_base, freq_step); } } set_frequency(0.0); if (fails) return ksft_exit_fail(); return ksft_exit_pass(); } |