Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 | // SPDX-License-Identifier: GPL-2.0-only /* * tools/testing/selftests/kvm/lib/x86_64/processor.c * * Copyright (C) 2018, Google LLC. */ #define _GNU_SOURCE /* for program_invocation_name */ #include "test_util.h" #include "kvm_util.h" #include "../kvm_util_internal.h" #include "processor.h" /* Minimum physical address used for virtual translation tables. */ #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 /* Virtual translation table structure declarations */ struct pageMapL4Entry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t ignored_06:1; uint64_t page_size:1; uint64_t ignored_11_08:4; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; struct pageDirectoryPointerEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t ignored_06:1; uint64_t page_size:1; uint64_t ignored_11_08:4; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; struct pageDirectoryEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t ignored_06:1; uint64_t page_size:1; uint64_t ignored_11_08:4; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; struct pageTableEntry { uint64_t present:1; uint64_t writable:1; uint64_t user:1; uint64_t write_through:1; uint64_t cache_disable:1; uint64_t accessed:1; uint64_t dirty:1; uint64_t reserved_07:1; uint64_t global:1; uint64_t ignored_11_09:3; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t execute_disable:1; }; /* Register Dump * * Input Args: * indent - Left margin indent amount * regs - register * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the registers given by regs, to the FILE stream * given by steam. */ void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) { fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " "rcx: 0x%.16llx rdx: 0x%.16llx\n", indent, "", regs->rax, regs->rbx, regs->rcx, regs->rdx); fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " "rsp: 0x%.16llx rbp: 0x%.16llx\n", indent, "", regs->rsi, regs->rdi, regs->rsp, regs->rbp); fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " "r10: 0x%.16llx r11: 0x%.16llx\n", indent, "", regs->r8, regs->r9, regs->r10, regs->r11); fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " "r14: 0x%.16llx r15: 0x%.16llx\n", indent, "", regs->r12, regs->r13, regs->r14, regs->r15); fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", indent, "", regs->rip, regs->rflags); } /* Segment Dump * * Input Args: * indent - Left margin indent amount * segment - KVM segment * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the KVM segment given by segment, to the FILE stream * given by steam. */ static void segment_dump(FILE *stream, struct kvm_segment *segment, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " "selector: 0x%.4x type: 0x%.2x\n", indent, "", segment->base, segment->limit, segment->selector, segment->type); fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", indent, "", segment->present, segment->dpl, segment->db, segment->s, segment->l); fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " "unusable: 0x%.2x padding: 0x%.2x\n", indent, "", segment->g, segment->avl, segment->unusable, segment->padding); } /* dtable Dump * * Input Args: * indent - Left margin indent amount * dtable - KVM dtable * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the KVM dtable given by dtable, to the FILE stream * given by steam. */ static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, uint8_t indent) { fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " "padding: 0x%.4x 0x%.4x 0x%.4x\n", indent, "", dtable->base, dtable->limit, dtable->padding[0], dtable->padding[1], dtable->padding[2]); } /* System Register Dump * * Input Args: * indent - Left margin indent amount * sregs - System registers * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the state of the system registers given by sregs, to the FILE stream * given by steam. */ void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) { unsigned int i; fprintf(stream, "%*scs:\n", indent, ""); segment_dump(stream, &sregs->cs, indent + 2); fprintf(stream, "%*sds:\n", indent, ""); segment_dump(stream, &sregs->ds, indent + 2); fprintf(stream, "%*ses:\n", indent, ""); segment_dump(stream, &sregs->es, indent + 2); fprintf(stream, "%*sfs:\n", indent, ""); segment_dump(stream, &sregs->fs, indent + 2); fprintf(stream, "%*sgs:\n", indent, ""); segment_dump(stream, &sregs->gs, indent + 2); fprintf(stream, "%*sss:\n", indent, ""); segment_dump(stream, &sregs->ss, indent + 2); fprintf(stream, "%*str:\n", indent, ""); segment_dump(stream, &sregs->tr, indent + 2); fprintf(stream, "%*sldt:\n", indent, ""); segment_dump(stream, &sregs->ldt, indent + 2); fprintf(stream, "%*sgdt:\n", indent, ""); dtable_dump(stream, &sregs->gdt, indent + 2); fprintf(stream, "%*sidt:\n", indent, ""); dtable_dump(stream, &sregs->idt, indent + 2); fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " "cr3: 0x%.16llx cr4: 0x%.16llx\n", indent, "", sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " "apic_base: 0x%.16llx\n", indent, "", sregs->cr8, sregs->efer, sregs->apic_base); fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { fprintf(stream, "%*s%.16llx\n", indent + 2, "", sregs->interrupt_bitmap[i]); } } void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot) { TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); /* If needed, create page map l4 table. */ if (!vm->pgd_created) { vm_paddr_t paddr = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot); vm->pgd = paddr; vm->pgd_created = true; } } /* VM Virtual Page Map * * Input Args: * vm - Virtual Machine * vaddr - VM Virtual Address * paddr - VM Physical Address * pgd_memslot - Memory region slot for new virtual translation tables * * Output Args: None * * Return: None * * Within the VM given by vm, creates a virtual translation for the page * starting at vaddr to the page starting at paddr. */ void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, uint32_t pgd_memslot) { uint16_t index[4]; struct pageMapL4Entry *pml4e; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT((vaddr % vm->page_size) == 0, "Virtual address not on page boundary,\n" " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); TEST_ASSERT((paddr % vm->page_size) == 0, "Physical address not on page boundary,\n" " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); index[0] = (vaddr >> 12) & 0x1ffu; index[1] = (vaddr >> 21) & 0x1ffu; index[2] = (vaddr >> 30) & 0x1ffu; index[3] = (vaddr >> 39) & 0x1ffu; /* Allocate page directory pointer table if not present. */ pml4e = addr_gpa2hva(vm, vm->pgd); if (!pml4e[index[3]].present) { pml4e[index[3]].address = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) >> vm->page_shift; pml4e[index[3]].writable = true; pml4e[index[3]].present = true; } /* Allocate page directory table if not present. */ struct pageDirectoryPointerEntry *pdpe; pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); if (!pdpe[index[2]].present) { pdpe[index[2]].address = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) >> vm->page_shift; pdpe[index[2]].writable = true; pdpe[index[2]].present = true; } /* Allocate page table if not present. */ struct pageDirectoryEntry *pde; pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); if (!pde[index[1]].present) { pde[index[1]].address = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) >> vm->page_shift; pde[index[1]].writable = true; pde[index[1]].present = true; } /* Fill in page table entry. */ struct pageTableEntry *pte; pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); pte[index[0]].address = paddr >> vm->page_shift; pte[index[0]].writable = true; pte[index[0]].present = 1; } /* Virtual Translation Tables Dump * * Input Args: * vm - Virtual Machine * indent - Left margin indent amount * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps to the FILE stream given by stream, the contents of all the * virtual translation tables for the VM given by vm. */ void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { struct pageMapL4Entry *pml4e, *pml4e_start; struct pageDirectoryPointerEntry *pdpe, *pdpe_start; struct pageDirectoryEntry *pde, *pde_start; struct pageTableEntry *pte, *pte_start; if (!vm->pgd_created) return; fprintf(stream, "%*s " " no\n", indent, ""); fprintf(stream, "%*s index hvaddr gpaddr " "addr w exec dirty\n", indent, ""); pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm, vm->pgd); for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { pml4e = &pml4e_start[n1]; if (!pml4e->present) continue; fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " " %u\n", indent, "", pml4e - pml4e_start, pml4e, addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address, pml4e->writable, pml4e->execute_disable); pdpe_start = addr_gpa2hva(vm, pml4e->address * vm->page_size); for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { pdpe = &pdpe_start[n2]; if (!pdpe->present) continue; fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " "%u %u\n", indent, "", pdpe - pdpe_start, pdpe, addr_hva2gpa(vm, pdpe), (uint64_t) pdpe->address, pdpe->writable, pdpe->execute_disable); pde_start = addr_gpa2hva(vm, pdpe->address * vm->page_size); for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { pde = &pde_start[n3]; if (!pde->present) continue; fprintf(stream, "%*spde 0x%-3zx %p " "0x%-12lx 0x%-10lx %u %u\n", indent, "", pde - pde_start, pde, addr_hva2gpa(vm, pde), (uint64_t) pde->address, pde->writable, pde->execute_disable); pte_start = addr_gpa2hva(vm, pde->address * vm->page_size); for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { pte = &pte_start[n4]; if (!pte->present) continue; fprintf(stream, "%*spte 0x%-3zx %p " "0x%-12lx 0x%-10lx %u %u " " %u 0x%-10lx\n", indent, "", pte - pte_start, pte, addr_hva2gpa(vm, pte), (uint64_t) pte->address, pte->writable, pte->execute_disable, pte->dirty, ((uint64_t) n1 << 27) | ((uint64_t) n2 << 18) | ((uint64_t) n3 << 9) | ((uint64_t) n4)); } } } } } /* Set Unusable Segment * * Input Args: None * * Output Args: * segp - Pointer to segment register * * Return: None * * Sets the segment register pointed to by segp to an unusable state. */ static void kvm_seg_set_unusable(struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->unusable = true; } static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) { void *gdt = addr_gva2hva(vm, vm->gdt); struct desc64 *desc = gdt + (segp->selector >> 3) * 8; desc->limit0 = segp->limit & 0xFFFF; desc->base0 = segp->base & 0xFFFF; desc->base1 = segp->base >> 16; desc->s = segp->s; desc->type = segp->type; desc->dpl = segp->dpl; desc->p = segp->present; desc->limit1 = segp->limit >> 16; desc->l = segp->l; desc->db = segp->db; desc->g = segp->g; desc->base2 = segp->base >> 24; if (!segp->s) desc->base3 = segp->base >> 32; } /* Set Long Mode Flat Kernel Code Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by segp, to be a code segment * with the selector value given by selector. */ static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed * | kFlagCodeReadable */ segp->g = true; segp->l = true; segp->present = 1; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } /* Set Long Mode Flat Kernel Data Segment * * Input Args: * vm - VM whose GDT is being filled, or NULL to only write segp * selector - selector value * * Output Args: * segp - Pointer to KVM segment * * Return: None * * Sets up the KVM segment pointed to by segp, to be a data segment * with the selector value given by selector. */ static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, struct kvm_segment *segp) { memset(segp, 0, sizeof(*segp)); segp->selector = selector; segp->limit = 0xFFFFFFFFu; segp->s = 0x1; /* kTypeCodeData */ segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed * | kFlagDataWritable */ segp->g = true; segp->present = true; if (vm) kvm_seg_fill_gdt_64bit(vm, segp); } /* Address Guest Virtual to Guest Physical * * Input Args: * vm - Virtual Machine * gpa - VM virtual address * * Output Args: None * * Return: * Equivalent VM physical address * * Translates the VM virtual address given by gva to a VM physical * address and then locates the memory region containing the VM * physical address, within the VM given by vm. When found, the host * virtual address providing the memory to the vm physical address is returned. * A TEST_ASSERT failure occurs if no region containing translated * VM virtual address exists. */ vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { uint16_t index[4]; struct pageMapL4Entry *pml4e; struct pageDirectoryPointerEntry *pdpe; struct pageDirectoryEntry *pde; struct pageTableEntry *pte; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); index[0] = (gva >> 12) & 0x1ffu; index[1] = (gva >> 21) & 0x1ffu; index[2] = (gva >> 30) & 0x1ffu; index[3] = (gva >> 39) & 0x1ffu; if (!vm->pgd_created) goto unmapped_gva; pml4e = addr_gpa2hva(vm, vm->pgd); if (!pml4e[index[3]].present) goto unmapped_gva; pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); if (!pdpe[index[2]].present) goto unmapped_gva; pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); if (!pde[index[1]].present) goto unmapped_gva; pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); if (!pte[index[0]].present) goto unmapped_gva; return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu); unmapped_gva: TEST_ASSERT(false, "No mapping for vm virtual address, " "gva: 0x%lx", gva); exit(EXIT_FAILURE); } static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot, int pgd_memslot) { if (!vm->gdt) vm->gdt = vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); dt->base = vm->gdt; dt->limit = getpagesize(); } static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, int selector, int gdt_memslot, int pgd_memslot) { if (!vm->tss) vm->tss = vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); memset(segp, 0, sizeof(*segp)); segp->base = vm->tss; segp->limit = 0x67; segp->selector = selector; segp->type = 0xb; segp->present = 1; kvm_seg_fill_gdt_64bit(vm, segp); } static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot) { struct kvm_sregs sregs; /* Set mode specific system register values. */ vcpu_sregs_get(vm, vcpuid, &sregs); sregs.idt.limit = 0; kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot); switch (vm->mode) { case VM_MODE_PXXV48_4K: sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); kvm_seg_set_unusable(&sregs.ldt); kvm_seg_set_kernel_code_64bit(vm, 0x8, &sregs.cs); kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.ds); kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.es); kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot); break; default: TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode); } sregs.cr3 = vm->pgd; vcpu_sregs_set(vm, vcpuid, &sregs); } /* Adds a vCPU with reasonable defaults (i.e., a stack) * * Input Args: * vcpuid - The id of the VCPU to add to the VM. * guest_code - The vCPU's entry point */ void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) { struct kvm_mp_state mp_state; struct kvm_regs regs; vm_vaddr_t stack_vaddr; stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0); /* Create VCPU */ vm_vcpu_add(vm, vcpuid); vcpu_setup(vm, vcpuid, 0, 0); /* Setup guest general purpose registers */ vcpu_regs_get(vm, vcpuid, ®s); regs.rflags = regs.rflags | 0x2; regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); regs.rip = (unsigned long) guest_code; vcpu_regs_set(vm, vcpuid, ®s); /* Setup the MP state */ mp_state.mp_state = 0; vcpu_set_mp_state(vm, vcpuid, &mp_state); } /* Allocate an instance of struct kvm_cpuid2 * * Input Args: None * * Output Args: None * * Return: A pointer to the allocated struct. The caller is responsible * for freeing this struct. * * Since kvm_cpuid2 uses a 0-length array to allow a the size of the * array to be decided at allocation time, allocation is slightly * complicated. This function uses a reasonable default length for * the array and performs the appropriate allocation. */ static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) { struct kvm_cpuid2 *cpuid; int nent = 100; size_t size; size = sizeof(*cpuid); size += nent * sizeof(struct kvm_cpuid_entry2); cpuid = malloc(size); if (!cpuid) { perror("malloc"); abort(); } cpuid->nent = nent; return cpuid; } /* KVM Supported CPUID Get * * Input Args: None * * Output Args: * * Return: The supported KVM CPUID * * Get the guest CPUID supported by KVM. */ struct kvm_cpuid2 *kvm_get_supported_cpuid(void) { static struct kvm_cpuid2 *cpuid; int ret; int kvm_fd; if (cpuid) return cpuid; cpuid = allocate_kvm_cpuid2(); kvm_fd = open(KVM_DEV_PATH, O_RDONLY); if (kvm_fd < 0) exit(KSFT_SKIP); ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", ret, errno); close(kvm_fd); return cpuid; } /* Locate a cpuid entry. * * Input Args: * cpuid: The cpuid. * function: The function of the cpuid entry to find. * * Output Args: None * * Return: A pointer to the cpuid entry. Never returns NULL. */ struct kvm_cpuid_entry2 * kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) { struct kvm_cpuid2 *cpuid; struct kvm_cpuid_entry2 *entry = NULL; int i; cpuid = kvm_get_supported_cpuid(); for (i = 0; i < cpuid->nent; i++) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) { entry = &cpuid->entries[i]; break; } } TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", function, index); return entry; } /* VM VCPU CPUID Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU id * cpuid - The CPUID values to set. * * Output Args: None * * Return: void * * Set the VCPU's CPUID. */ void vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_cpuid2 *cpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int rc; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", rc, errno); } /* Create a VM with reasonable defaults * * Input Args: * vcpuid - The id of the single VCPU to add to the VM. * extra_mem_pages - The size of extra memories to add (this will * decide how much extra space we will need to * setup the page tables using mem slot 0) * guest_code - The vCPU's entry point * * Output Args: None * * Return: * Pointer to opaque structure that describes the created VM. */ struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, void *guest_code) { struct kvm_vm *vm; /* * For x86 the maximum page table size for a memory region * will be when only 4K pages are used. In that case the * total extra size for page tables (for extra N pages) will * be: N/512+N/512^2+N/512^3+... which is definitely smaller * than N/512*2. */ uint64_t extra_pg_pages = extra_mem_pages / 512 * 2; /* Create VM */ vm = vm_create(VM_MODE_DEFAULT, DEFAULT_GUEST_PHY_PAGES + extra_pg_pages, O_RDWR); /* Setup guest code */ kvm_vm_elf_load(vm, program_invocation_name, 0, 0); /* Setup IRQ Chip */ vm_create_irqchip(vm); /* Add the first vCPU. */ vm_vcpu_add_default(vm, vcpuid, guest_code); return vm; } /* VCPU Get MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * * Output Args: None * * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. * * Get value of MSR for VCPU. */ uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" " rc: %i errno: %i", r, errno); return buffer.entry.data; } /* _VCPU Set MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * msr_value - New value of MSR * * Output Args: None * * Return: The result of KVM_SET_MSRS. * * Sets the value of an MSR for the given VCPU. */ int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, uint64_t msr_value) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct { struct kvm_msrs header; struct kvm_msr_entry entry; } buffer = {}; int r; TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); memset(&buffer, 0, sizeof(buffer)); buffer.header.nmsrs = 1; buffer.entry.index = msr_index; buffer.entry.data = msr_value; r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); return r; } /* VCPU Set MSR * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * msr_index - Index of MSR * msr_value - New value of MSR * * Output Args: None * * Return: On success, nothing. On failure a TEST_ASSERT is produced. * * Set value of MSR for VCPU. */ void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, uint64_t msr_value) { int r; r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value); TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" " rc: %i errno: %i", r, errno); } /* VM VCPU Args Set * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * num - number of arguments * ... - arguments, each of type uint64_t * * Output Args: None * * Return: None * * Sets the first num function input arguments to the values * given as variable args. Each of the variable args is expected to * be of type uint64_t. */ void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) { va_list ap; struct kvm_regs regs; TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" " num: %u\n", num); va_start(ap, num); vcpu_regs_get(vm, vcpuid, ®s); if (num >= 1) regs.rdi = va_arg(ap, uint64_t); if (num >= 2) regs.rsi = va_arg(ap, uint64_t); if (num >= 3) regs.rdx = va_arg(ap, uint64_t); if (num >= 4) regs.rcx = va_arg(ap, uint64_t); if (num >= 5) regs.r8 = va_arg(ap, uint64_t); if (num >= 6) regs.r9 = va_arg(ap, uint64_t); vcpu_regs_set(vm, vcpuid, ®s); va_end(ap); } /* * VM VCPU Dump * * Input Args: * vm - Virtual Machine * vcpuid - VCPU ID * indent - Left margin indent amount * * Output Args: * stream - Output FILE stream * * Return: None * * Dumps the current state of the VCPU specified by vcpuid, within the VM * given by vm, to the FILE stream given by stream. */ void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) { struct kvm_regs regs; struct kvm_sregs sregs; fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); fprintf(stream, "%*sregs:\n", indent + 2, ""); vcpu_regs_get(vm, vcpuid, ®s); regs_dump(stream, ®s, indent + 4); fprintf(stream, "%*ssregs:\n", indent + 2, ""); vcpu_sregs_get(vm, vcpuid, &sregs); sregs_dump(stream, &sregs, indent + 4); } struct kvm_x86_state { struct kvm_vcpu_events events; struct kvm_mp_state mp_state; struct kvm_regs regs; struct kvm_xsave xsave; struct kvm_xcrs xcrs; struct kvm_sregs sregs; struct kvm_debugregs debugregs; union { struct kvm_nested_state nested; char nested_[16384]; }; struct kvm_msrs msrs; }; static int kvm_get_num_msrs_fd(int kvm_fd) { struct kvm_msr_list nmsrs; int r; nmsrs.nmsrs = 0; r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", r); return nmsrs.nmsrs; } static int kvm_get_num_msrs(struct kvm_vm *vm) { return kvm_get_num_msrs_fd(vm->kvm_fd); } struct kvm_msr_list *kvm_get_msr_index_list(void) { struct kvm_msr_list *list; int nmsrs, r, kvm_fd; kvm_fd = open(KVM_DEV_PATH, O_RDONLY); if (kvm_fd < 0) exit(KSFT_SKIP); nmsrs = kvm_get_num_msrs_fd(kvm_fd); list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); list->nmsrs = nmsrs; r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); close(kvm_fd); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", r); return list; } struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); struct kvm_msr_list *list; struct kvm_x86_state *state; int nmsrs, r, i; static int nested_size = -1; if (nested_size == -1) { nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); TEST_ASSERT(nested_size <= sizeof(state->nested_), "Nested state size too big, %i > %zi", nested_size, sizeof(state->nested_)); } /* * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees * guest state is consistent only after userspace re-enters the * kernel with KVM_RUN. Complete IO prior to migrating state * to a new VM. */ vcpu_run_complete_io(vm, vcpuid); nmsrs = kvm_get_num_msrs(vm); list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); list->nmsrs = nmsrs; r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", r); state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", r); r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", r); if (kvm_check_cap(KVM_CAP_XCRS)) { r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", r); } r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", r); if (nested_size) { state->nested.size = sizeof(state->nested_); r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", r); TEST_ASSERT(state->nested.size <= nested_size, "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", state->nested.size, nested_size); } else state->nested.size = 0; state->msrs.nmsrs = nmsrs; for (i = 0; i < nmsrs; i++) state->msrs.entries[i].index = list->indices[i]; r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", r, r == nmsrs ? -1 : list->indices[r]); r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", r); free(list); return state; } void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) { struct vcpu *vcpu = vcpu_find(vm, vcpuid); int r; r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", r); if (kvm_check_cap(KVM_CAP_XCRS)) { r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", r); } r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", r); r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", r); if (state->nested.size) { r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", r); } } bool is_intel_cpu(void) { int eax, ebx, ecx, edx; const uint32_t *chunk; const int leaf = 0; __asm__ __volatile__( "cpuid" : /* output */ "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : /* input */ "0"(leaf), "2"(0)); chunk = (const uint32_t *)("GenuineIntel"); return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); } uint32_t kvm_get_cpuid_max_basic(void) { return kvm_get_supported_cpuid_entry(0)->eax; } uint32_t kvm_get_cpuid_max_extended(void) { return kvm_get_supported_cpuid_entry(0x80000000)->eax; } void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) { struct kvm_cpuid_entry2 *entry; bool pae; /* SDM 4.1.4 */ if (kvm_get_cpuid_max_extended() < 0x80000008) { pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); *pa_bits = pae ? 36 : 32; *va_bits = 32; } else { entry = kvm_get_supported_cpuid_entry(0x80000008); *pa_bits = entry->eax & 0xff; *va_bits = (entry->eax >> 8) & 0xff; } } |