Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Linaro Limited. * * Author: Daniel Lezcano <daniel.lezcano@linaro.org> * */ #include <linux/cpu_cooling.h> #include <linux/cpuidle.h> #include <linux/err.h> #include <linux/idle_inject.h> #include <linux/idr.h> #include <linux/slab.h> #include <linux/thermal.h> /** * struct cpuidle_cooling_device - data for the idle cooling device * @ii_dev: an atomic to keep track of the last task exiting the idle cycle * @state: a normalized integer giving the state of the cooling device */ struct cpuidle_cooling_device { struct idle_inject_device *ii_dev; unsigned long state; }; static DEFINE_IDA(cpuidle_ida); /** * cpuidle_cooling_runtime - Running time computation * @idle_duration_us: the idle cooling device * @state: a percentile based number * * The running duration is computed from the idle injection duration * which is fixed. If we reach 100% of idle injection ratio, that * means the running duration is zero. If we have a 50% ratio * injection, that means we have equal duration for idle and for * running duration. * * The formula is deduced as follows: * * running = idle x ((100 / ratio) - 1) * * For precision purpose for integer math, we use the following: * * running = (idle x 100) / ratio - idle * * For example, if we have an injected duration of 50%, then we end up * with 10ms of idle injection and 10ms of running duration. * * Return: An unsigned int for a usec based runtime duration. */ static unsigned int cpuidle_cooling_runtime(unsigned int idle_duration_us, unsigned long state) { if (!state) return 0; return ((idle_duration_us * 100) / state) - idle_duration_us; } /** * cpuidle_cooling_get_max_state - Get the maximum state * @cdev : the thermal cooling device * @state : a pointer to the state variable to be filled * * The function always returns 100 as the injection ratio. It is * percentile based for consistency accross different platforms. * * Return: The function can not fail, it is always zero */ static int cpuidle_cooling_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { /* * Depending on the configuration or the hardware, the running * cycle and the idle cycle could be different. We want to * unify that to an 0..100 interval, so the set state * interface will be the same whatever the platform is. * * The state 100% will make the cluster 100% ... idle. A 0% * injection ratio means no idle injection at all and 50% * means for 10ms of idle injection, we have 10ms of running * time. */ *state = 100; return 0; } /** * cpuidle_cooling_get_cur_state - Get the current cooling state * @cdev: the thermal cooling device * @state: a pointer to the state * * The function just copies the state value from the private thermal * cooling device structure, the mapping is 1 <-> 1. * * Return: The function can not fail, it is always zero */ static int cpuidle_cooling_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct cpuidle_cooling_device *idle_cdev = cdev->devdata; *state = idle_cdev->state; return 0; } /** * cpuidle_cooling_set_cur_state - Set the current cooling state * @cdev: the thermal cooling device * @state: the target state * * The function checks first if we are initiating the mitigation which * in turn wakes up all the idle injection tasks belonging to the idle * cooling device. In any case, it updates the internal state for the * cooling device. * * Return: The function can not fail, it is always zero */ static int cpuidle_cooling_set_cur_state(struct thermal_cooling_device *cdev, unsigned long state) { struct cpuidle_cooling_device *idle_cdev = cdev->devdata; struct idle_inject_device *ii_dev = idle_cdev->ii_dev; unsigned long current_state = idle_cdev->state; unsigned int runtime_us, idle_duration_us; idle_cdev->state = state; idle_inject_get_duration(ii_dev, &runtime_us, &idle_duration_us); runtime_us = cpuidle_cooling_runtime(idle_duration_us, state); idle_inject_set_duration(ii_dev, runtime_us, idle_duration_us); if (current_state == 0 && state > 0) { idle_inject_start(ii_dev); } else if (current_state > 0 && !state) { idle_inject_stop(ii_dev); } return 0; } /** * cpuidle_cooling_ops - thermal cooling device ops */ static struct thermal_cooling_device_ops cpuidle_cooling_ops = { .get_max_state = cpuidle_cooling_get_max_state, .get_cur_state = cpuidle_cooling_get_cur_state, .set_cur_state = cpuidle_cooling_set_cur_state, }; /** * cpuidle_of_cooling_register - Idle cooling device initialization function * @drv: a cpuidle driver structure pointer * @np: a node pointer to a device tree cooling device node * * This function is in charge of creating a cooling device per cpuidle * driver and register it to thermal framework. * * Return: zero on success, or negative value corresponding to the * error detected in the underlying subsystems. */ int cpuidle_of_cooling_register(struct device_node *np, struct cpuidle_driver *drv) { struct idle_inject_device *ii_dev; struct cpuidle_cooling_device *idle_cdev; struct thermal_cooling_device *cdev; char dev_name[THERMAL_NAME_LENGTH]; int id, ret; idle_cdev = kzalloc(sizeof(*idle_cdev), GFP_KERNEL); if (!idle_cdev) { ret = -ENOMEM; goto out; } id = ida_simple_get(&cpuidle_ida, 0, 0, GFP_KERNEL); if (id < 0) { ret = id; goto out_kfree; } ii_dev = idle_inject_register(drv->cpumask); if (!ii_dev) { ret = -EINVAL; goto out_id; } idle_inject_set_duration(ii_dev, TICK_USEC, TICK_USEC); idle_cdev->ii_dev = ii_dev; snprintf(dev_name, sizeof(dev_name), "thermal-idle-%d", id); cdev = thermal_of_cooling_device_register(np, dev_name, idle_cdev, &cpuidle_cooling_ops); if (IS_ERR(cdev)) { ret = PTR_ERR(cdev); goto out_unregister; } return 0; out_unregister: idle_inject_unregister(ii_dev); out_id: ida_simple_remove(&cpuidle_ida, id); out_kfree: kfree(idle_cdev); out: return ret; } /** * cpuidle_cooling_register - Idle cooling device initialization function * @drv: a cpuidle driver structure pointer * * This function is in charge of creating a cooling device per cpuidle * driver and register it to thermal framework. * * Return: zero on success, or negative value corresponding to the * error detected in the underlying subsystems. */ int cpuidle_cooling_register(struct cpuidle_driver *drv) { return cpuidle_of_cooling_register(NULL, drv); } |