Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include "include/hw_ip/mmu/mmu_general.h" #include <linux/genalloc.h> #include <linux/slab.h> static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = NULL; hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, (unsigned long) hop_addr) if (hop_addr == pgt_info->shadow_addr) break; return pgt_info; } static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info) { struct hl_device *hdev = ctx->hdev; gen_pool_free(hdev->mmu_pgt_pool, pgt_info->phys_addr, hdev->asic_prop.mmu_hop_table_size); hash_del(&pgt_info->node); kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); kfree(pgt_info); } static void free_hop(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); _free_hop(ctx, pgt_info); } static u64 alloc_hop(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct pgt_info *pgt_info; u64 phys_addr, shadow_addr; pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); if (!pgt_info) return ULLONG_MAX; phys_addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool, prop->mmu_hop_table_size); if (!phys_addr) { dev_err(hdev->dev, "failed to allocate page\n"); goto pool_add_err; } shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size, GFP_KERNEL); if (!shadow_addr) goto shadow_err; pgt_info->phys_addr = phys_addr; pgt_info->shadow_addr = shadow_addr; pgt_info->ctx = ctx; pgt_info->num_of_ptes = 0; hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); return shadow_addr; shadow_err: gen_pool_free(hdev->mmu_pgt_pool, phys_addr, prop->mmu_hop_table_size); pool_add_err: kfree(pgt_info); return ULLONG_MAX; } static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx) { return ctx->hdev->asic_prop.mmu_pgt_addr + (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); } static inline u64 get_hop0_addr(struct hl_ctx *ctx) { return (u64) (uintptr_t) ctx->hdev->mmu_shadow_hop0 + (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); } static inline void flush(struct hl_ctx *ctx) { /* flush all writes from all cores to reach PCI */ mb(); ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx)); } /* transform the value to physical address when writing to H/W */ static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { /* * The value to write is actually the address of the next shadow hop + * flags at the 12 LSBs. * Hence in order to get the value to write to the physical PTE, we * clear the 12 LSBs and translate the shadow hop to its associated * physical hop, and add back the original 12 LSBs. */ u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) | (val & FLAGS_MASK); ctx->hdev->asic_funcs->write_pte(ctx->hdev, get_phys_addr(ctx, shadow_pte_addr), phys_val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } /* do not transform the value to physical address when writing to H/W */ static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { ctx->hdev->asic_funcs->write_pte(ctx->hdev, get_phys_addr(ctx, shadow_pte_addr), val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } /* clear the last and present bits */ static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr) { /* no need to transform the value to physical address */ write_final_pte(ctx, pte_addr, 0); } static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) { get_pgt_info(ctx, hop_addr)->num_of_ptes++; } /* * put_pte - decrement the num of ptes and free the hop if possible * * @ctx: pointer to the context structure * @hop_addr: addr of the hop * * This function returns the number of ptes left on this hop. If the number is * 0, it means the pte was freed. */ static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); int num_of_ptes_left; pgt_info->num_of_ptes--; /* * Need to save the number of ptes left because free_hop might free * the pgt_info */ num_of_ptes_left = pgt_info->num_of_ptes; if (!num_of_ptes_left) _free_hop(ctx, pgt_info); return num_of_ptes_left; } static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 virt_addr, u64 mask, u64 shift) { return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); } static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask, mmu_prop->hop0_shift); } static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask, mmu_prop->hop1_shift); } static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask, mmu_prop->hop2_shift); } static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask, mmu_prop->hop3_shift); } static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask, mmu_prop->hop4_shift); } static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) { if (curr_pte & PAGE_PRESENT_MASK) return curr_pte & HOP_PHYS_ADDR_MASK; else return ULLONG_MAX; } static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop) { u64 hop_addr = get_next_hop_addr(ctx, curr_pte); if (hop_addr == ULLONG_MAX) { hop_addr = alloc_hop(ctx); *is_new_hop = (hop_addr != ULLONG_MAX); } return hop_addr; } /* translates shadow address inside hop to a physical address */ static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) { u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1); u64 shadow_hop_addr = shadow_addr & ~page_mask; u64 pte_offset = shadow_addr & page_mask; u64 phys_hop_addr; if (shadow_hop_addr != get_hop0_addr(ctx)) phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr; else phys_hop_addr = get_phys_hop0_addr(ctx); return phys_hop_addr + pte_offset; } static int dram_default_mapping_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr, pte_val; int rc, i, j, hop3_allocated = 0; if ((!hdev->dram_supports_virtual_memory) || (!hdev->dram_default_page_mapping) || (ctx->asid == HL_KERNEL_ASID_ID)) return 0; num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); if (!ctx->dram_default_hops) return -ENOMEM; hop0_addr = get_hop0_addr(ctx); hop1_addr = alloc_hop(ctx); if (hop1_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 1\n"); rc = -ENOMEM; goto hop1_err; } ctx->dram_default_hops[total_hops - 1] = hop1_addr; hop2_addr = alloc_hop(ctx); if (hop2_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 2\n"); rc = -ENOMEM; goto hop2_err; } ctx->dram_default_hops[total_hops - 2] = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { ctx->dram_default_hops[i] = alloc_hop(ctx); if (ctx->dram_default_hops[i] == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); rc = -ENOMEM; goto hop3_err; } hop3_allocated++; } /* need only pte 0 in hops 0 and 1 */ pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop0_addr, pte_val); pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop1_addr, pte_val); get_pte(ctx, hop1_addr); hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop2_pte_addr, pte_val); get_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { write_final_pte(ctx, hop3_pte_addr, pte_val); get_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } flush(ctx); return 0; hop3_err: for (i = 0 ; i < hop3_allocated ; i++) free_hop(ctx, ctx->dram_default_hops[i]); free_hop(ctx, hop2_addr); hop2_err: free_hop(ctx, hop1_addr); hop1_err: kfree(ctx->dram_default_hops); return rc; } static void dram_default_mapping_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr; int i, j; if ((!hdev->dram_supports_virtual_memory) || (!hdev->dram_default_page_mapping) || (ctx->asid == HL_KERNEL_ASID_ID)) return; num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); hop0_addr = get_hop0_addr(ctx); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; hop1_addr = ctx->dram_default_hops[total_hops - 1]; hop2_addr = ctx->dram_default_hops[total_hops - 2]; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { clear_pte(ctx, hop3_pte_addr); put_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } hop2_pte_addr = hop2_addr; hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { clear_pte(ctx, hop2_pte_addr); put_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } clear_pte(ctx, hop1_addr); put_pte(ctx, hop1_addr); clear_pte(ctx, hop0_addr); kfree(ctx->dram_default_hops); flush(ctx); } /** * hl_mmu_init() - initialize the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Create a pool of pages for pgt_infos. * - Create a shadow table for pgt * * Return: 0 for success, non-zero for failure. */ int hl_mmu_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; if (!hdev->mmu_enable) return 0; hdev->mmu_pgt_pool = gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); if (!hdev->mmu_pgt_pool) { dev_err(hdev->dev, "Failed to create page gen pool\n"); return -ENOMEM; } rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr + prop->mmu_hop0_tables_total_size, prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); goto err_pool_add; } hdev->mmu_shadow_hop0 = kvmalloc_array(prop->max_asid, prop->mmu_hop_table_size, GFP_KERNEL | __GFP_ZERO); if (!hdev->mmu_shadow_hop0) { rc = -ENOMEM; goto err_pool_add; } /* MMU H/W init will be done in device hw_init() */ return 0; err_pool_add: gen_pool_destroy(hdev->mmu_pgt_pool); return rc; } /** * hl_mmu_fini() - release the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ void hl_mmu_fini(struct hl_device *hdev) { if (!hdev->mmu_enable) return; /* MMU H/W fini was already done in device hw_fini() */ kvfree(hdev->mmu_shadow_hop0); gen_pool_destroy(hdev->mmu_pgt_pool); } /** * hl_mmu_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ int hl_mmu_ctx_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (!hdev->mmu_enable) return 0; mutex_init(&ctx->mmu_lock); hash_init(ctx->mmu_phys_hash); hash_init(ctx->mmu_shadow_hash); return dram_default_mapping_init(ctx); } /* * hl_mmu_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ void hl_mmu_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; struct hlist_node *tmp; int i; if (!hdev->mmu_enable) return; dram_default_mapping_fini(ctx); if (!hash_empty(ctx->mmu_shadow_hash)) dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", ctx->asid); hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { dev_err_ratelimited(hdev->dev, "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); _free_hop(ctx, pgt_info); } mutex_destroy(&ctx->mmu_lock); } static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 hop0_addr = 0, hop0_pte_addr = 0, hop1_addr = 0, hop1_pte_addr = 0, hop2_addr = 0, hop2_pte_addr = 0, hop3_addr = 0, hop3_pte_addr = 0, hop4_addr = 0, hop4_pte_addr = 0, curr_pte; bool is_huge, clear_hop3 = true; mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; hop0_addr = get_hop0_addr(ctx); hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; hop1_addr = get_next_hop_addr(ctx, curr_pte); if (hop1_addr == ULLONG_MAX) goto not_mapped; hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; hop2_addr = get_next_hop_addr(ctx, curr_pte); if (hop2_addr == ULLONG_MAX) goto not_mapped; hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; hop3_addr = get_next_hop_addr(ctx, curr_pte); if (hop3_addr == ULLONG_MAX) goto not_mapped; hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; is_huge = curr_pte & LAST_MASK; if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); return -EFAULT; } if (!is_huge) { hop4_addr = get_next_hop_addr(ctx, curr_pte); if (hop4_addr == ULLONG_MAX) goto not_mapped; hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; clear_hop3 = false; } if (hdev->dram_default_page_mapping && is_dram_addr) { u64 default_pte = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (curr_pte == default_pte) { dev_err(hdev->dev, "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } if (!(curr_pte & PAGE_PRESENT_MASK)) { dev_err(hdev->dev, "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } write_final_pte(ctx, hop3_pte_addr, default_pte); put_pte(ctx, hop3_addr); } else { if (!(curr_pte & PAGE_PRESENT_MASK)) goto not_mapped; if (hop4_addr) clear_pte(ctx, hop4_pte_addr); else clear_pte(ctx, hop3_pte_addr); if (hop4_addr && !put_pte(ctx, hop4_addr)) clear_hop3 = true; if (!clear_hop3) goto flush; clear_pte(ctx, hop3_pte_addr); if (put_pte(ctx, hop3_addr)) goto flush; clear_pte(ctx, hop2_pte_addr); if (put_pte(ctx, hop2_addr)) goto flush; clear_pte(ctx, hop1_pte_addr); if (put_pte(ctx, hop1_addr)) goto flush; clear_pte(ctx, hop0_pte_addr); } flush: flush(ctx); return 0; not_mapped: dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return -EINVAL; } /* * hl_mmu_unmap - unmaps a virtual addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @page_size: size of the page to unmap * * This function does the following: * - Check that the virt addr is mapped * - Unmap the virt addr and frees pgts if possible * - Returns 0 on success, -EINVAL if the given addr is not mapped * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area */ int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr; u32 real_page_size, npages; int i, rc; bool is_dram_addr; if (!hdev->mmu_enable) return 0; is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->va_space_dram_start_address, prop->va_space_dram_end_address); mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and unmap them separately. */ if ((page_size % mmu_prop->huge_page_size) == 0) { real_page_size = mmu_prop->huge_page_size; } else if ((page_size % mmu_prop->page_size) == 0) { real_page_size = mmu_prop->page_size; } else { dev_err(hdev->dev, "page size of %u is not %uKB nor %uMB aligned, can't unmap\n", page_size, mmu_prop->page_size >> 10, mmu_prop->huge_page_size >> 20); return -EFAULT; } npages = page_size / real_page_size; real_virt_addr = virt_addr; for (i = 0 ; i < npages ; i++) { rc = _hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr); if (rc) return rc; real_virt_addr += real_page_size; } return 0; } static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 hop0_addr = 0, hop0_pte_addr = 0, hop1_addr = 0, hop1_pte_addr = 0, hop2_addr = 0, hop2_pte_addr = 0, hop3_addr = 0, hop3_pte_addr = 0, hop4_addr = 0, hop4_pte_addr = 0, curr_pte = 0; bool hop1_new = false, hop2_new = false, hop3_new = false, hop4_new = false, is_huge; int rc = -ENOMEM; mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; /* * This mapping function can map a page or a huge page. For huge page * there are only 3 hops rather than 4. Currently the DRAM allocation * uses huge pages only but user memory could have been allocated with * one of the two page sizes. Since this is a common code for all the * three cases, we need this hugs page check. */ is_huge = page_size == mmu_prop->huge_page_size; if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM mapping should use huge pages only\n"); return -EFAULT; } hop0_addr = get_hop0_addr(ctx); hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new); if (hop1_addr == ULLONG_MAX) goto err; hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new); if (hop2_addr == ULLONG_MAX) goto err; hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new); if (hop3_addr == ULLONG_MAX) goto err; hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; if (!is_huge) { hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new); if (hop4_addr == ULLONG_MAX) goto err; hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; } if (hdev->dram_default_page_mapping && is_dram_addr) { u64 default_pte = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (curr_pte != default_pte) { dev_err(hdev->dev, "DRAM: mapping already exists for virt_addr 0x%llx\n", virt_addr); rc = -EINVAL; goto err; } if (hop1_new || hop2_new || hop3_new || hop4_new) { dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n"); rc = -EFAULT; goto err; } } else if (curr_pte & PAGE_PRESENT_MASK) { dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n", virt_addr); dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr); dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr); dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr); dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr); if (!is_huge) dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop4_pte_addr, hop4_pte_addr); rc = -EINVAL; goto err; } curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (is_huge) write_final_pte(ctx, hop3_pte_addr, curr_pte); else write_final_pte(ctx, hop4_pte_addr, curr_pte); if (hop1_new) { curr_pte = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop0_pte_addr, curr_pte); } if (hop2_new) { curr_pte = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop1_pte_addr, curr_pte); get_pte(ctx, hop1_addr); } if (hop3_new) { curr_pte = (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop2_pte_addr, curr_pte); get_pte(ctx, hop2_addr); } if (!is_huge) { if (hop4_new) { curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop3_pte_addr, curr_pte); get_pte(ctx, hop3_addr); } get_pte(ctx, hop4_addr); } else { get_pte(ctx, hop3_addr); } flush(ctx); return 0; err: if (hop4_new) free_hop(ctx, hop4_addr); if (hop3_new) free_hop(ctx, hop3_addr); if (hop2_new) free_hop(ctx, hop2_addr); if (hop1_new) free_hop(ctx, hop1_addr); return rc; } /* * hl_mmu_map - maps a virtual addr to physical addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @page_size: physical page size * * This function does the following: * - Check that the virt addr is not mapped * - Allocate pgts as necessary in order to map the virt addr to the phys * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area */ int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr, real_phys_addr; u32 real_page_size, npages; int i, rc, mapped_cnt = 0; bool is_dram_addr; if (!hdev->mmu_enable) return 0; is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->va_space_dram_start_address, prop->va_space_dram_end_address); mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and map them separately. */ if ((page_size % mmu_prop->huge_page_size) == 0) { real_page_size = mmu_prop->huge_page_size; } else if ((page_size % mmu_prop->page_size) == 0) { real_page_size = mmu_prop->page_size; } else { dev_err(hdev->dev, "page size of %u is not %dKB nor %dMB aligned, can't unmap\n", page_size, mmu_prop->page_size >> 10, mmu_prop->huge_page_size >> 20); return -EFAULT; } WARN_ONCE((phys_addr & (real_page_size - 1)), "Mapping 0x%llx with page size of 0x%x is erroneous! Address must be divisible by page size", phys_addr, real_page_size); npages = page_size / real_page_size; real_virt_addr = virt_addr; real_phys_addr = phys_addr; for (i = 0 ; i < npages ; i++) { rc = _hl_mmu_map(ctx, real_virt_addr, real_phys_addr, real_page_size, is_dram_addr); if (rc) goto err; real_virt_addr += real_page_size; real_phys_addr += real_page_size; mapped_cnt++; } return 0; err: real_virt_addr = virt_addr; for (i = 0 ; i < mapped_cnt ; i++) { if (_hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr)) dev_warn_ratelimited(hdev->dev, "failed to unmap va: 0x%llx\n", real_virt_addr); real_virt_addr += real_page_size; } return rc; } /* * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ void hl_mmu_swap_out(struct hl_ctx *ctx) { } /* * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ void hl_mmu_swap_in(struct hl_ctx *ctx) { } |