Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 | /* * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <subdev/clk.h> #include <subdev/volt.h> #include <subdev/timer.h> #include <core/device.h> #include <core/tegra.h> #include "priv.h" #include "gk20a.h" #define GPCPLL_CFG_SYNC_MODE BIT(2) #define BYPASSCTRL_SYS (SYS_GPCPLL_CFG_BASE + 0x340) #define BYPASSCTRL_SYS_GPCPLL_SHIFT 0 #define BYPASSCTRL_SYS_GPCPLL_WIDTH 1 #define GPCPLL_CFG2_SDM_DIN_SHIFT 0 #define GPCPLL_CFG2_SDM_DIN_WIDTH 8 #define GPCPLL_CFG2_SDM_DIN_MASK \ (MASK(GPCPLL_CFG2_SDM_DIN_WIDTH) << GPCPLL_CFG2_SDM_DIN_SHIFT) #define GPCPLL_CFG2_SDM_DIN_NEW_SHIFT 8 #define GPCPLL_CFG2_SDM_DIN_NEW_WIDTH 15 #define GPCPLL_CFG2_SDM_DIN_NEW_MASK \ (MASK(GPCPLL_CFG2_SDM_DIN_NEW_WIDTH) << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT) #define GPCPLL_CFG2_SETUP2_SHIFT 16 #define GPCPLL_CFG2_PLL_STEPA_SHIFT 24 #define GPCPLL_DVFS0 (SYS_GPCPLL_CFG_BASE + 0x10) #define GPCPLL_DVFS0_DFS_COEFF_SHIFT 0 #define GPCPLL_DVFS0_DFS_COEFF_WIDTH 7 #define GPCPLL_DVFS0_DFS_COEFF_MASK \ (MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH) << GPCPLL_DVFS0_DFS_COEFF_SHIFT) #define GPCPLL_DVFS0_DFS_DET_MAX_SHIFT 8 #define GPCPLL_DVFS0_DFS_DET_MAX_WIDTH 7 #define GPCPLL_DVFS0_DFS_DET_MAX_MASK \ (MASK(GPCPLL_DVFS0_DFS_DET_MAX_WIDTH) << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT) #define GPCPLL_DVFS1 (SYS_GPCPLL_CFG_BASE + 0x14) #define GPCPLL_DVFS1_DFS_EXT_DET_SHIFT 0 #define GPCPLL_DVFS1_DFS_EXT_DET_WIDTH 7 #define GPCPLL_DVFS1_DFS_EXT_STRB_SHIFT 7 #define GPCPLL_DVFS1_DFS_EXT_STRB_WIDTH 1 #define GPCPLL_DVFS1_DFS_EXT_CAL_SHIFT 8 #define GPCPLL_DVFS1_DFS_EXT_CAL_WIDTH 7 #define GPCPLL_DVFS1_DFS_EXT_SEL_SHIFT 15 #define GPCPLL_DVFS1_DFS_EXT_SEL_WIDTH 1 #define GPCPLL_DVFS1_DFS_CTRL_SHIFT 16 #define GPCPLL_DVFS1_DFS_CTRL_WIDTH 12 #define GPCPLL_DVFS1_EN_SDM_SHIFT 28 #define GPCPLL_DVFS1_EN_SDM_WIDTH 1 #define GPCPLL_DVFS1_EN_SDM_BIT BIT(28) #define GPCPLL_DVFS1_EN_DFS_SHIFT 29 #define GPCPLL_DVFS1_EN_DFS_WIDTH 1 #define GPCPLL_DVFS1_EN_DFS_BIT BIT(29) #define GPCPLL_DVFS1_EN_DFS_CAL_SHIFT 30 #define GPCPLL_DVFS1_EN_DFS_CAL_WIDTH 1 #define GPCPLL_DVFS1_EN_DFS_CAL_BIT BIT(30) #define GPCPLL_DVFS1_DFS_CAL_DONE_SHIFT 31 #define GPCPLL_DVFS1_DFS_CAL_DONE_WIDTH 1 #define GPCPLL_DVFS1_DFS_CAL_DONE_BIT BIT(31) #define GPC_BCAST_GPCPLL_DVFS2 (GPC_BCAST_GPCPLL_CFG_BASE + 0x20) #define GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT BIT(16) #define GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT 24 #define GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH 7 #define DFS_DET_RANGE 6 /* -2^6 ... 2^6-1 */ #define SDM_DIN_RANGE 12 /* -2^12 ... 2^12-1 */ struct gm20b_clk_dvfs_params { s32 coeff_slope; s32 coeff_offs; u32 vco_ctrl; }; static const struct gm20b_clk_dvfs_params gm20b_dvfs_params = { .coeff_slope = -165230, .coeff_offs = 214007, .vco_ctrl = 0x7 << 3, }; /* * base.n is now the *integer* part of the N factor. * sdm_din contains n's decimal part. */ struct gm20b_pll { struct gk20a_pll base; u32 sdm_din; }; struct gm20b_clk_dvfs { u32 dfs_coeff; s32 dfs_det_max; s32 dfs_ext_cal; }; struct gm20b_clk { /* currently applied parameters */ struct gk20a_clk base; struct gm20b_clk_dvfs dvfs; u32 uv; /* new parameters to apply */ struct gk20a_pll new_pll; struct gm20b_clk_dvfs new_dvfs; u32 new_uv; const struct gm20b_clk_dvfs_params *dvfs_params; /* fused parameters */ s32 uvdet_slope; s32 uvdet_offs; /* safe frequency we can use at minimum voltage */ u32 safe_fmax_vmin; }; #define gm20b_clk(p) container_of((gk20a_clk(p)), struct gm20b_clk, base) static u32 pl_to_div(u32 pl) { return pl; } static u32 div_to_pl(u32 div) { return div; } static const struct gk20a_clk_pllg_params gm20b_pllg_params = { .min_vco = 1300000, .max_vco = 2600000, .min_u = 12000, .max_u = 38400, .min_m = 1, .max_m = 255, .min_n = 8, .max_n = 255, .min_pl = 1, .max_pl = 31, }; static void gm20b_pllg_read_mnp(struct gm20b_clk *clk, struct gm20b_pll *pll) { struct nvkm_subdev *subdev = &clk->base.base.subdev; struct nvkm_device *device = subdev->device; u32 val; gk20a_pllg_read_mnp(&clk->base, &pll->base); val = nvkm_rd32(device, GPCPLL_CFG2); pll->sdm_din = (val >> GPCPLL_CFG2_SDM_DIN_SHIFT) & MASK(GPCPLL_CFG2_SDM_DIN_WIDTH); } static void gm20b_pllg_write_mnp(struct gm20b_clk *clk, const struct gm20b_pll *pll) { struct nvkm_device *device = clk->base.base.subdev.device; nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK, pll->sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT); gk20a_pllg_write_mnp(&clk->base, &pll->base); } /* * Determine DFS_COEFF for the requested voltage. Always select external * calibration override equal to the voltage, and set maximum detection * limit "0" (to make sure that PLL output remains under F/V curve when * voltage increases). */ static void gm20b_dvfs_calc_det_coeff(struct gm20b_clk *clk, s32 uv, struct gm20b_clk_dvfs *dvfs) { struct nvkm_subdev *subdev = &clk->base.base.subdev; const struct gm20b_clk_dvfs_params *p = clk->dvfs_params; u32 coeff; /* Work with mv as uv would likely trigger an overflow */ s32 mv = DIV_ROUND_CLOSEST(uv, 1000); /* coeff = slope * voltage + offset */ coeff = DIV_ROUND_CLOSEST(mv * p->coeff_slope, 1000) + p->coeff_offs; coeff = DIV_ROUND_CLOSEST(coeff, 1000); dvfs->dfs_coeff = min_t(u32, coeff, MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH)); dvfs->dfs_ext_cal = DIV_ROUND_CLOSEST(uv - clk->uvdet_offs, clk->uvdet_slope); /* should never happen */ if (abs(dvfs->dfs_ext_cal) >= BIT(DFS_DET_RANGE)) nvkm_error(subdev, "dfs_ext_cal overflow!\n"); dvfs->dfs_det_max = 0; nvkm_debug(subdev, "%s uv: %d coeff: %x, ext_cal: %d, det_max: %d\n", __func__, uv, dvfs->dfs_coeff, dvfs->dfs_ext_cal, dvfs->dfs_det_max); } /* * Solve equation for integer and fractional part of the effective NDIV: * * n_eff = n_int + 1/2 + (SDM_DIN / 2^(SDM_DIN_RANGE + 1)) + * (DVFS_COEFF * DVFS_DET_DELTA) / 2^DFS_DET_RANGE * * The SDM_DIN LSB is finally shifted out, since it is not accessible by sw. */ static void gm20b_dvfs_calc_ndiv(struct gm20b_clk *clk, u32 n_eff, u32 *n_int, u32 *sdm_din) { struct nvkm_subdev *subdev = &clk->base.base.subdev; const struct gk20a_clk_pllg_params *p = clk->base.params; u32 n; s32 det_delta; u32 rem, rem_range; /* calculate current ext_cal and subtract previous one */ det_delta = DIV_ROUND_CLOSEST(((s32)clk->uv) - clk->uvdet_offs, clk->uvdet_slope); det_delta -= clk->dvfs.dfs_ext_cal; det_delta = min(det_delta, clk->dvfs.dfs_det_max); det_delta *= clk->dvfs.dfs_coeff; /* integer part of n */ n = (n_eff << DFS_DET_RANGE) - det_delta; /* should never happen! */ if (n <= 0) { nvkm_error(subdev, "ndiv <= 0 - setting to 1...\n"); n = 1 << DFS_DET_RANGE; } if (n >> DFS_DET_RANGE > p->max_n) { nvkm_error(subdev, "ndiv > max_n - setting to max_n...\n"); n = p->max_n << DFS_DET_RANGE; } *n_int = n >> DFS_DET_RANGE; /* fractional part of n */ rem = ((u32)n) & MASK(DFS_DET_RANGE); rem_range = SDM_DIN_RANGE + 1 - DFS_DET_RANGE; /* subtract 2^SDM_DIN_RANGE to account for the 1/2 of the equation */ rem = (rem << rem_range) - BIT(SDM_DIN_RANGE); /* lose 8 LSB and clip - sdm_din only keeps the most significant byte */ *sdm_din = (rem >> BITS_PER_BYTE) & MASK(GPCPLL_CFG2_SDM_DIN_WIDTH); nvkm_debug(subdev, "%s n_eff: %d, n_int: %d, sdm_din: %d\n", __func__, n_eff, *n_int, *sdm_din); } static int gm20b_pllg_slide(struct gm20b_clk *clk, u32 n) { struct nvkm_subdev *subdev = &clk->base.base.subdev; struct nvkm_device *device = subdev->device; struct gm20b_pll pll; u32 n_int, sdm_din; int ret = 0; /* calculate the new n_int/sdm_din for this n/uv */ gm20b_dvfs_calc_ndiv(clk, n, &n_int, &sdm_din); /* get old coefficients */ gm20b_pllg_read_mnp(clk, &pll); /* do nothing if NDIV is the same */ if (n_int == pll.base.n && sdm_din == pll.sdm_din) return 0; /* pll slowdown mode */ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); /* new ndiv ready for ramp */ /* in DVFS mode SDM is updated via "new" field */ nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_NEW_MASK, sdm_din << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT); pll.base.n = n_int; udelay(1); gk20a_pllg_write_mnp(&clk->base, &pll.base); /* dynamic ramp to new ndiv */ udelay(1); nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT)); /* wait for ramping to complete */ if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG, GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK, GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0) ret = -ETIMEDOUT; /* in DVFS mode complete SDM update */ nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK, sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT); /* exit slowdown mode */ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); return ret; } static int gm20b_pllg_enable(struct gm20b_clk *clk) { struct nvkm_device *device = clk->base.base.subdev.device; nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); nvkm_rd32(device, GPCPLL_CFG); /* In DVFS mode lock cannot be used - so just delay */ udelay(40); /* set SYNC_MODE for glitchless switch out of bypass */ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE, GPCPLL_CFG_SYNC_MODE); nvkm_rd32(device, GPCPLL_CFG); /* switch to VCO mode */ nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); return 0; } static void gm20b_pllg_disable(struct gm20b_clk *clk) { struct nvkm_device *device = clk->base.base.subdev.device; /* put PLL in bypass before disabling it */ nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); /* clear SYNC_MODE before disabling PLL */ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE, 0); nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); nvkm_rd32(device, GPCPLL_CFG); } static int gm20b_pllg_program_mnp(struct gm20b_clk *clk, const struct gk20a_pll *pll) { struct nvkm_subdev *subdev = &clk->base.base.subdev; struct nvkm_device *device = subdev->device; struct gm20b_pll cur_pll; u32 n_int, sdm_din; /* if we only change pdiv, we can do a glitchless transition */ bool pdiv_only; int ret; gm20b_dvfs_calc_ndiv(clk, pll->n, &n_int, &sdm_din); gm20b_pllg_read_mnp(clk, &cur_pll); pdiv_only = cur_pll.base.n == n_int && cur_pll.sdm_din == sdm_din && cur_pll.base.m == pll->m; /* need full sequence if clock not enabled yet */ if (!gk20a_pllg_is_enabled(&clk->base)) pdiv_only = false; /* split VCO-to-bypass jump in half by setting out divider 1:2 */ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); /* Intentional 2nd write to assure linear divider operation */ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); nvkm_rd32(device, GPC2CLK_OUT); udelay(2); if (pdiv_only) { u32 old = cur_pll.base.pl; u32 new = pll->pl; /* * we can do a glitchless transition only if the old and new PL * parameters share at least one bit set to 1. If this is not * the case, calculate and program an interim PL that will allow * us to respect that rule. */ if ((old & new) == 0) { cur_pll.base.pl = min(old | BIT(ffs(new) - 1), new | BIT(ffs(old) - 1)); gk20a_pllg_write_mnp(&clk->base, &cur_pll.base); } cur_pll.base.pl = new; gk20a_pllg_write_mnp(&clk->base, &cur_pll.base); } else { /* disable before programming if more than pdiv changes */ gm20b_pllg_disable(clk); cur_pll.base = *pll; cur_pll.base.n = n_int; cur_pll.sdm_din = sdm_din; gm20b_pllg_write_mnp(clk, &cur_pll); ret = gm20b_pllg_enable(clk); if (ret) return ret; } /* restore out divider 1:1 */ udelay(2); nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); /* Intentional 2nd write to assure linear divider operation */ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); nvkm_rd32(device, GPC2CLK_OUT); return 0; } static int gm20b_pllg_program_mnp_slide(struct gm20b_clk *clk, const struct gk20a_pll *pll) { struct gk20a_pll cur_pll; int ret; if (gk20a_pllg_is_enabled(&clk->base)) { gk20a_pllg_read_mnp(&clk->base, &cur_pll); /* just do NDIV slide if there is no change to M and PL */ if (pll->m == cur_pll.m && pll->pl == cur_pll.pl) return gm20b_pllg_slide(clk, pll->n); /* slide down to current NDIV_LO */ cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll); ret = gm20b_pllg_slide(clk, cur_pll.n); if (ret) return ret; } /* program MNP with the new clock parameters and new NDIV_LO */ cur_pll = *pll; cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll); ret = gm20b_pllg_program_mnp(clk, &cur_pll); if (ret) return ret; /* slide up to new NDIV */ return gm20b_pllg_slide(clk, pll->n); } static int gm20b_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) { struct gm20b_clk *clk = gm20b_clk(base); struct nvkm_subdev *subdev = &base->subdev; struct nvkm_volt *volt = base->subdev.device->volt; int ret; ret = gk20a_pllg_calc_mnp(&clk->base, cstate->domain[nv_clk_src_gpc] * GK20A_CLK_GPC_MDIV, &clk->new_pll); if (ret) return ret; clk->new_uv = volt->vid[cstate->voltage].uv; gm20b_dvfs_calc_det_coeff(clk, clk->new_uv, &clk->new_dvfs); nvkm_debug(subdev, "%s uv: %d uv\n", __func__, clk->new_uv); return 0; } /* * Compute PLL parameters that are always safe for the current voltage */ static void gm20b_dvfs_calc_safe_pll(struct gm20b_clk *clk, struct gk20a_pll *pll) { u32 rate = gk20a_pllg_calc_rate(&clk->base, pll) / KHZ; u32 parent_rate = clk->base.parent_rate / KHZ; u32 nmin, nsafe; /* remove a safe margin of 10% */ if (rate > clk->safe_fmax_vmin) rate = rate * (100 - 10) / 100; /* gpc2clk */ rate *= 2; nmin = DIV_ROUND_UP(pll->m * clk->base.params->min_vco, parent_rate); nsafe = pll->m * rate / (clk->base.parent_rate); if (nsafe < nmin) { pll->pl = DIV_ROUND_UP(nmin * parent_rate, pll->m * rate); nsafe = nmin; } pll->n = nsafe; } static void gm20b_dvfs_program_coeff(struct gm20b_clk *clk, u32 coeff) { struct nvkm_device *device = clk->base.base.subdev.device; /* strobe to read external DFS coefficient */ nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT); nvkm_mask(device, GPCPLL_DVFS0, GPCPLL_DVFS0_DFS_COEFF_MASK, coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT); udelay(1); nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0); } static void gm20b_dvfs_program_ext_cal(struct gm20b_clk *clk, u32 dfs_det_cal) { struct nvkm_device *device = clk->base.base.subdev.device; u32 val; nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, MASK(DFS_DET_RANGE + 1), dfs_det_cal); udelay(1); val = nvkm_rd32(device, GPCPLL_DVFS1); if (!(val & BIT(25))) { /* Use external value to overwrite calibration value */ val |= BIT(25) | BIT(16); nvkm_wr32(device, GPCPLL_DVFS1, val); } } static void gm20b_dvfs_program_dfs_detection(struct gm20b_clk *clk, struct gm20b_clk_dvfs *dvfs) { struct nvkm_device *device = clk->base.base.subdev.device; /* strobe to read external DFS coefficient */ nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT); nvkm_mask(device, GPCPLL_DVFS0, GPCPLL_DVFS0_DFS_COEFF_MASK | GPCPLL_DVFS0_DFS_DET_MAX_MASK, dvfs->dfs_coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT | dvfs->dfs_det_max << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT); udelay(1); nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0); gm20b_dvfs_program_ext_cal(clk, dvfs->dfs_ext_cal); } static int gm20b_clk_prog(struct nvkm_clk *base) { struct gm20b_clk *clk = gm20b_clk(base); u32 cur_freq; int ret; /* No change in DVFS settings? */ if (clk->uv == clk->new_uv) goto prog; /* * Interim step for changing DVFS detection settings: low enough * frequency to be safe at at DVFS coeff = 0. * * 1. If voltage is increasing: * - safe frequency target matches the lowest - old - frequency * - DVFS settings are still old * - Voltage already increased to new level by volt, but maximum * detection limit assures PLL output remains under F/V curve * * 2. If voltage is decreasing: * - safe frequency target matches the lowest - new - frequency * - DVFS settings are still old * - Voltage is also old, it will be lowered by volt afterwards * * Interim step can be skipped if old frequency is below safe minimum, * i.e., it is low enough to be safe at any voltage in operating range * with zero DVFS coefficient. */ cur_freq = nvkm_clk_read(&clk->base.base, nv_clk_src_gpc); if (cur_freq > clk->safe_fmax_vmin) { struct gk20a_pll pll_safe; if (clk->uv < clk->new_uv) /* voltage will raise: safe frequency is current one */ pll_safe = clk->base.pll; else /* voltage will drop: safe frequency is new one */ pll_safe = clk->new_pll; gm20b_dvfs_calc_safe_pll(clk, &pll_safe); ret = gm20b_pllg_program_mnp_slide(clk, &pll_safe); if (ret) return ret; } /* * DVFS detection settings transition: * - Set DVFS coefficient zero * - Set calibration level to new voltage * - Set DVFS coefficient to match new voltage */ gm20b_dvfs_program_coeff(clk, 0); gm20b_dvfs_program_ext_cal(clk, clk->new_dvfs.dfs_ext_cal); gm20b_dvfs_program_coeff(clk, clk->new_dvfs.dfs_coeff); gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs); prog: clk->uv = clk->new_uv; clk->dvfs = clk->new_dvfs; clk->base.pll = clk->new_pll; return gm20b_pllg_program_mnp_slide(clk, &clk->base.pll); } static struct nvkm_pstate gm20b_pstates[] = { { .base = { .domain[nv_clk_src_gpc] = 76800, .voltage = 0, }, }, { .base = { .domain[nv_clk_src_gpc] = 153600, .voltage = 1, }, }, { .base = { .domain[nv_clk_src_gpc] = 230400, .voltage = 2, }, }, { .base = { .domain[nv_clk_src_gpc] = 307200, .voltage = 3, }, }, { .base = { .domain[nv_clk_src_gpc] = 384000, .voltage = 4, }, }, { .base = { .domain[nv_clk_src_gpc] = 460800, .voltage = 5, }, }, { .base = { .domain[nv_clk_src_gpc] = 537600, .voltage = 6, }, }, { .base = { .domain[nv_clk_src_gpc] = 614400, .voltage = 7, }, }, { .base = { .domain[nv_clk_src_gpc] = 691200, .voltage = 8, }, }, { .base = { .domain[nv_clk_src_gpc] = 768000, .voltage = 9, }, }, { .base = { .domain[nv_clk_src_gpc] = 844800, .voltage = 10, }, }, { .base = { .domain[nv_clk_src_gpc] = 921600, .voltage = 11, }, }, { .base = { .domain[nv_clk_src_gpc] = 998400, .voltage = 12, }, }, }; static void gm20b_clk_fini(struct nvkm_clk *base) { struct nvkm_device *device = base->subdev.device; struct gm20b_clk *clk = gm20b_clk(base); /* slide to VCO min */ if (gk20a_pllg_is_enabled(&clk->base)) { struct gk20a_pll pll; u32 n_lo; gk20a_pllg_read_mnp(&clk->base, &pll); n_lo = gk20a_pllg_n_lo(&clk->base, &pll); gm20b_pllg_slide(clk, n_lo); } gm20b_pllg_disable(clk); /* set IDDQ */ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1); } static int gm20b_clk_init_dvfs(struct gm20b_clk *clk) { struct nvkm_subdev *subdev = &clk->base.base.subdev; struct nvkm_device *device = subdev->device; bool fused = clk->uvdet_offs && clk->uvdet_slope; static const s32 ADC_SLOPE_UV = 10000; /* default ADC detection slope */ u32 data; int ret; /* Enable NA DVFS */ nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_BIT, GPCPLL_DVFS1_EN_DFS_BIT); /* Set VCO_CTRL */ if (clk->dvfs_params->vco_ctrl) nvkm_mask(device, GPCPLL_CFG3, GPCPLL_CFG3_VCO_CTRL_MASK, clk->dvfs_params->vco_ctrl << GPCPLL_CFG3_VCO_CTRL_SHIFT); if (fused) { /* Start internal calibration, but ignore results */ nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT, GPCPLL_DVFS1_EN_DFS_CAL_BIT); /* got uvdev parameters from fuse, skip calibration */ goto calibrated; } /* * If calibration parameters are not fused, start internal calibration, * wait for completion, and use results along with default slope to * calculate ADC offset during boot. */ nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT, GPCPLL_DVFS1_EN_DFS_CAL_BIT); /* Wait for internal calibration done (spec < 2us). */ ret = nvkm_wait_usec(device, 10, GPCPLL_DVFS1, GPCPLL_DVFS1_DFS_CAL_DONE_BIT, GPCPLL_DVFS1_DFS_CAL_DONE_BIT); if (ret < 0) { nvkm_error(subdev, "GPCPLL calibration timeout\n"); return -ETIMEDOUT; } data = nvkm_rd32(device, GPCPLL_CFG3) >> GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT; data &= MASK(GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH); clk->uvdet_slope = ADC_SLOPE_UV; clk->uvdet_offs = ((s32)clk->uv) - data * ADC_SLOPE_UV; nvkm_debug(subdev, "calibrated DVFS parameters: offs %d, slope %d\n", clk->uvdet_offs, clk->uvdet_slope); calibrated: /* Compute and apply initial DVFS parameters */ gm20b_dvfs_calc_det_coeff(clk, clk->uv, &clk->dvfs); gm20b_dvfs_program_coeff(clk, 0); gm20b_dvfs_program_ext_cal(clk, clk->dvfs.dfs_ext_cal); gm20b_dvfs_program_coeff(clk, clk->dvfs.dfs_coeff); gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs); return 0; } /* Forward declaration to detect speedo >=1 in gm20b_clk_init() */ static const struct nvkm_clk_func gm20b_clk; static int gm20b_clk_init(struct nvkm_clk *base) { struct gk20a_clk *clk = gk20a_clk(base); struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; int ret; u32 data; /* get out from IDDQ */ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0); nvkm_rd32(device, GPCPLL_CFG); udelay(5); nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL); /* Set the global bypass control to VCO */ nvkm_mask(device, BYPASSCTRL_SYS, MASK(BYPASSCTRL_SYS_GPCPLL_WIDTH) << BYPASSCTRL_SYS_GPCPLL_SHIFT, 0); ret = gk20a_clk_setup_slide(clk); if (ret) return ret; /* If not fused, set RAM SVOP PDP data 0x2, and enable fuse override */ data = nvkm_rd32(device, 0x021944); if (!(data & 0x3)) { data |= 0x2; nvkm_wr32(device, 0x021944, data); data = nvkm_rd32(device, 0x021948); data |= 0x1; nvkm_wr32(device, 0x021948, data); } /* Disable idle slow down */ nvkm_mask(device, 0x20160, 0x003f0000, 0x0); /* speedo >= 1? */ if (clk->base.func == &gm20b_clk) { struct gm20b_clk *_clk = gm20b_clk(base); struct nvkm_volt *volt = device->volt; /* Get current voltage */ _clk->uv = nvkm_volt_get(volt); /* Initialize DVFS */ ret = gm20b_clk_init_dvfs(_clk); if (ret) return ret; } /* Start with lowest frequency */ base->func->calc(base, &base->func->pstates[0].base); ret = base->func->prog(base); if (ret) { nvkm_error(subdev, "cannot initialize clock\n"); return ret; } return 0; } static const struct nvkm_clk_func gm20b_clk_speedo0 = { .init = gm20b_clk_init, .fini = gk20a_clk_fini, .read = gk20a_clk_read, .calc = gk20a_clk_calc, .prog = gk20a_clk_prog, .tidy = gk20a_clk_tidy, .pstates = gm20b_pstates, /* Speedo 0 only supports 12 voltages */ .nr_pstates = ARRAY_SIZE(gm20b_pstates) - 1, .domains = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, { nv_clk_src_max }, }, }; static const struct nvkm_clk_func gm20b_clk = { .init = gm20b_clk_init, .fini = gm20b_clk_fini, .read = gk20a_clk_read, .calc = gm20b_clk_calc, .prog = gm20b_clk_prog, .tidy = gk20a_clk_tidy, .pstates = gm20b_pstates, .nr_pstates = ARRAY_SIZE(gm20b_pstates), .domains = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, { nv_clk_src_max }, }, }; static int gm20b_clk_new_speedo0(struct nvkm_device *device, int index, struct nvkm_clk **pclk) { struct gk20a_clk *clk; int ret; clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return -ENOMEM; *pclk = &clk->base; ret = gk20a_clk_ctor(device, index, &gm20b_clk_speedo0, &gm20b_pllg_params, clk); clk->pl_to_div = pl_to_div; clk->div_to_pl = div_to_pl; return ret; } /* FUSE register */ #define FUSE_RESERVED_CALIB0 0x204 #define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT 0 #define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH 4 #define FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT 4 #define FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH 10 #define FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT 14 #define FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH 10 #define FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT 24 #define FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH 6 #define FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT 30 #define FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH 2 static int gm20b_clk_init_fused_params(struct gm20b_clk *clk) { struct nvkm_subdev *subdev = &clk->base.base.subdev; u32 val = 0; u32 rev = 0; #if IS_ENABLED(CONFIG_ARCH_TEGRA) tegra_fuse_readl(FUSE_RESERVED_CALIB0, &val); rev = (val >> FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT) & MASK(FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH); #endif /* No fused parameters, we will calibrate later */ if (rev == 0) return -EINVAL; /* Integer part in mV + fractional part in uV */ clk->uvdet_slope = ((val >> FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT) & MASK(FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH)) * 1000 + ((val >> FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT) & MASK(FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH)); /* Integer part in mV + fractional part in 100uV */ clk->uvdet_offs = ((val >> FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT) & MASK(FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH)) * 1000 + ((val >> FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT) & MASK(FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH)) * 100; nvkm_debug(subdev, "fused calibration data: slope %d, offs %d\n", clk->uvdet_slope, clk->uvdet_offs); return 0; } static int gm20b_clk_init_safe_fmax(struct gm20b_clk *clk) { struct nvkm_subdev *subdev = &clk->base.base.subdev; struct nvkm_volt *volt = subdev->device->volt; struct nvkm_pstate *pstates = clk->base.base.func->pstates; int nr_pstates = clk->base.base.func->nr_pstates; int vmin, id = 0; u32 fmax = 0; int i; /* find lowest voltage we can use */ vmin = volt->vid[0].uv; for (i = 1; i < volt->vid_nr; i++) { if (volt->vid[i].uv <= vmin) { vmin = volt->vid[i].uv; id = volt->vid[i].vid; } } /* find max frequency at this voltage */ for (i = 0; i < nr_pstates; i++) if (pstates[i].base.voltage == id) fmax = max(fmax, pstates[i].base.domain[nv_clk_src_gpc]); if (!fmax) { nvkm_error(subdev, "failed to evaluate safe fmax\n"); return -EINVAL; } /* we are safe at 90% of the max frequency */ clk->safe_fmax_vmin = fmax * (100 - 10) / 100; nvkm_debug(subdev, "safe fmax @ vmin = %u Khz\n", clk->safe_fmax_vmin); return 0; } int gm20b_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk) { struct nvkm_device_tegra *tdev = device->func->tegra(device); struct gm20b_clk *clk; struct nvkm_subdev *subdev; struct gk20a_clk_pllg_params *clk_params; int ret; /* Speedo 0 GPUs cannot use noise-aware PLL */ if (tdev->gpu_speedo_id == 0) return gm20b_clk_new_speedo0(device, index, pclk); /* Speedo >= 1, use NAPLL */ clk = kzalloc(sizeof(*clk) + sizeof(*clk_params), GFP_KERNEL); if (!clk) return -ENOMEM; *pclk = &clk->base.base; subdev = &clk->base.base.subdev; /* duplicate the clock parameters since we will patch them below */ clk_params = (void *) (clk + 1); *clk_params = gm20b_pllg_params; ret = gk20a_clk_ctor(device, index, &gm20b_clk, clk_params, &clk->base); if (ret) return ret; /* * NAPLL can only work with max_u, clamp the m range so * gk20a_pllg_calc_mnp always uses it */ clk_params->max_m = clk_params->min_m = DIV_ROUND_UP(clk_params->max_u, (clk->base.parent_rate / KHZ)); if (clk_params->max_m == 0) { nvkm_warn(subdev, "cannot use NAPLL, using legacy clock...\n"); kfree(clk); return gm20b_clk_new_speedo0(device, index, pclk); } clk->base.pl_to_div = pl_to_div; clk->base.div_to_pl = div_to_pl; clk->dvfs_params = &gm20b_dvfs_params; ret = gm20b_clk_init_fused_params(clk); /* * we will calibrate during init - should never happen on * prod parts */ if (ret) nvkm_warn(subdev, "no fused calibration parameters\n"); ret = gm20b_clk_init_safe_fmax(clk); if (ret) return ret; return 0; } |