Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 | /* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Ben Widawsky <ben@bwidawsk.net> * Michel Thierry <michel.thierry@intel.com> * Thomas Daniel <thomas.daniel@intel.com> * Oscar Mateo <oscar.mateo@intel.com> * */ /** * DOC: Logical Rings, Logical Ring Contexts and Execlists * * Motivation: * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". * These expanded contexts enable a number of new abilities, especially * "Execlists" (also implemented in this file). * * One of the main differences with the legacy HW contexts is that logical * ring contexts incorporate many more things to the context's state, like * PDPs or ringbuffer control registers: * * The reason why PDPs are included in the context is straightforward: as * PPGTTs (per-process GTTs) are actually per-context, having the PDPs * contained there mean you don't need to do a ppgtt->switch_mm yourself, * instead, the GPU will do it for you on the context switch. * * But, what about the ringbuffer control registers (head, tail, etc..)? * shouldn't we just need a set of those per engine command streamer? This is * where the name "Logical Rings" starts to make sense: by virtualizing the * rings, the engine cs shifts to a new "ring buffer" with every context * switch. When you want to submit a workload to the GPU you: A) choose your * context, B) find its appropriate virtualized ring, C) write commands to it * and then, finally, D) tell the GPU to switch to that context. * * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch * to a contexts is via a context execution list, ergo "Execlists". * * LRC implementation: * Regarding the creation of contexts, we have: * * - One global default context. * - One local default context for each opened fd. * - One local extra context for each context create ioctl call. * * Now that ringbuffers belong per-context (and not per-engine, like before) * and that contexts are uniquely tied to a given engine (and not reusable, * like before) we need: * * - One ringbuffer per-engine inside each context. * - One backing object per-engine inside each context. * * The global default context starts its life with these new objects fully * allocated and populated. The local default context for each opened fd is * more complex, because we don't know at creation time which engine is going * to use them. To handle this, we have implemented a deferred creation of LR * contexts: * * The local context starts its life as a hollow or blank holder, that only * gets populated for a given engine once we receive an execbuffer. If later * on we receive another execbuffer ioctl for the same context but a different * engine, we allocate/populate a new ringbuffer and context backing object and * so on. * * Finally, regarding local contexts created using the ioctl call: as they are * only allowed with the render ring, we can allocate & populate them right * away (no need to defer anything, at least for now). * * Execlists implementation: * Execlists are the new method by which, on gen8+ hardware, workloads are * submitted for execution (as opposed to the legacy, ringbuffer-based, method). * This method works as follows: * * When a request is committed, its commands (the BB start and any leading or * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer * for the appropriate context. The tail pointer in the hardware context is not * updated at this time, but instead, kept by the driver in the ringbuffer * structure. A structure representing this request is added to a request queue * for the appropriate engine: this structure contains a copy of the context's * tail after the request was written to the ring buffer and a pointer to the * context itself. * * If the engine's request queue was empty before the request was added, the * queue is processed immediately. Otherwise the queue will be processed during * a context switch interrupt. In any case, elements on the queue will get sent * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a * globally unique 20-bits submission ID. * * When execution of a request completes, the GPU updates the context status * buffer with a context complete event and generates a context switch interrupt. * During the interrupt handling, the driver examines the events in the buffer: * for each context complete event, if the announced ID matches that on the head * of the request queue, then that request is retired and removed from the queue. * * After processing, if any requests were retired and the queue is not empty * then a new execution list can be submitted. The two requests at the front of * the queue are next to be submitted but since a context may not occur twice in * an execution list, if subsequent requests have the same ID as the first then * the two requests must be combined. This is done simply by discarding requests * at the head of the queue until either only one requests is left (in which case * we use a NULL second context) or the first two requests have unique IDs. * * By always executing the first two requests in the queue the driver ensures * that the GPU is kept as busy as possible. In the case where a single context * completes but a second context is still executing, the request for this second * context will be at the head of the queue when we remove the first one. This * request will then be resubmitted along with a new request for a different context, * which will cause the hardware to continue executing the second request and queue * the new request (the GPU detects the condition of a context getting preempted * with the same context and optimizes the context switch flow by not doing * preemption, but just sampling the new tail pointer). * */ #include <linux/interrupt.h> #include "i915_drv.h" #include "i915_perf.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_lrc_reg.h" #include "intel_mocs.h" #include "intel_reset.h" #include "intel_ring.h" #include "intel_workarounds.h" #define RING_EXECLIST_QFULL (1 << 0x2) #define RING_EXECLIST1_VALID (1 << 0x3) #define RING_EXECLIST0_VALID (1 << 0x4) #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) #define RING_EXECLIST1_ACTIVE (1 << 0x11) #define RING_EXECLIST0_ACTIVE (1 << 0x12) #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) #define GEN8_CTX_STATUS_COMPLETE (1 << 4) #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) #define GEN8_CTX_STATUS_COMPLETED_MASK \ (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) #define CTX_DESC_FORCE_RESTORE BIT_ULL(2) #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */ #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */ #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15) #define GEN12_IDLE_CTX_ID 0x7FF #define GEN12_CSB_CTX_VALID(csb_dw) \ (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID) /* Typical size of the average request (2 pipecontrols and a MI_BB) */ #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ #define WA_TAIL_DWORDS 2 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS) struct virtual_engine { struct intel_engine_cs base; struct intel_context context; /* * We allow only a single request through the virtual engine at a time * (each request in the timeline waits for the completion fence of * the previous before being submitted). By restricting ourselves to * only submitting a single request, each request is placed on to a * physical to maximise load spreading (by virtue of the late greedy * scheduling -- each real engine takes the next available request * upon idling). */ struct i915_request *request; /* * We keep a rbtree of available virtual engines inside each physical * engine, sorted by priority. Here we preallocate the nodes we need * for the virtual engine, indexed by physical_engine->id. */ struct ve_node { struct rb_node rb; int prio; } nodes[I915_NUM_ENGINES]; /* * Keep track of bonded pairs -- restrictions upon on our selection * of physical engines any particular request may be submitted to. * If we receive a submit-fence from a master engine, we will only * use one of sibling_mask physical engines. */ struct ve_bond { const struct intel_engine_cs *master; intel_engine_mask_t sibling_mask; } *bonds; unsigned int num_bonds; /* And finally, which physical engines this virtual engine maps onto. */ unsigned int num_siblings; struct intel_engine_cs *siblings[0]; }; static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) { GEM_BUG_ON(!intel_engine_is_virtual(engine)); return container_of(engine, struct virtual_engine, base); } static int __execlists_context_alloc(struct intel_context *ce, struct intel_engine_cs *engine); static void execlists_init_reg_state(u32 *reg_state, const struct intel_context *ce, const struct intel_engine_cs *engine, const struct intel_ring *ring, bool close); static void __execlists_update_reg_state(const struct intel_context *ce, const struct intel_engine_cs *engine, u32 head); static void mark_eio(struct i915_request *rq) { if (i915_request_completed(rq)) return; GEM_BUG_ON(i915_request_signaled(rq)); dma_fence_set_error(&rq->fence, -EIO); i915_request_mark_complete(rq); } static struct i915_request * active_request(const struct intel_timeline * const tl, struct i915_request *rq) { struct i915_request *active = rq; rcu_read_lock(); list_for_each_entry_continue_reverse(rq, &tl->requests, link) { if (i915_request_completed(rq)) break; active = rq; } rcu_read_unlock(); return active; } static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine) { return (i915_ggtt_offset(engine->status_page.vma) + I915_GEM_HWS_PREEMPT_ADDR); } static inline void ring_set_paused(const struct intel_engine_cs *engine, int state) { /* * We inspect HWS_PREEMPT with a semaphore inside * engine->emit_fini_breadcrumb. If the dword is true, * the ring is paused as the semaphore will busywait * until the dword is false. */ engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state; if (state) wmb(); } static inline struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } static inline int rq_prio(const struct i915_request *rq) { return rq->sched.attr.priority; } static int effective_prio(const struct i915_request *rq) { int prio = rq_prio(rq); /* * If this request is special and must not be interrupted at any * cost, so be it. Note we are only checking the most recent request * in the context and so may be masking an earlier vip request. It * is hoped that under the conditions where nopreempt is used, this * will not matter (i.e. all requests to that context will be * nopreempt for as long as desired). */ if (i915_request_has_nopreempt(rq)) prio = I915_PRIORITY_UNPREEMPTABLE; /* * On unwinding the active request, we give it a priority bump * if it has completed waiting on any semaphore. If we know that * the request has already started, we can prevent an unwanted * preempt-to-idle cycle by taking that into account now. */ if (__i915_request_has_started(rq)) prio |= I915_PRIORITY_NOSEMAPHORE; /* Restrict mere WAIT boosts from triggering preemption */ BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */ return prio | __NO_PREEMPTION; } static int queue_prio(const struct intel_engine_execlists *execlists) { struct i915_priolist *p; struct rb_node *rb; rb = rb_first_cached(&execlists->queue); if (!rb) return INT_MIN; /* * As the priolist[] are inverted, with the highest priority in [0], * we have to flip the index value to become priority. */ p = to_priolist(rb); return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used); } static inline bool need_preempt(const struct intel_engine_cs *engine, const struct i915_request *rq, struct rb_node *rb) { int last_prio; if (!intel_engine_has_semaphores(engine)) return false; /* * Check if the current priority hint merits a preemption attempt. * * We record the highest value priority we saw during rescheduling * prior to this dequeue, therefore we know that if it is strictly * less than the current tail of ESLP[0], we do not need to force * a preempt-to-idle cycle. * * However, the priority hint is a mere hint that we may need to * preempt. If that hint is stale or we may be trying to preempt * ourselves, ignore the request. * * More naturally we would write * prio >= max(0, last); * except that we wish to prevent triggering preemption at the same * priority level: the task that is running should remain running * to preserve FIFO ordering of dependencies. */ last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1); if (engine->execlists.queue_priority_hint <= last_prio) return false; /* * Check against the first request in ELSP[1], it will, thanks to the * power of PI, be the highest priority of that context. */ if (!list_is_last(&rq->sched.link, &engine->active.requests) && rq_prio(list_next_entry(rq, sched.link)) > last_prio) return true; if (rb) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); bool preempt = false; if (engine == ve->siblings[0]) { /* only preempt one sibling */ struct i915_request *next; rcu_read_lock(); next = READ_ONCE(ve->request); if (next) preempt = rq_prio(next) > last_prio; rcu_read_unlock(); } if (preempt) return preempt; } /* * If the inflight context did not trigger the preemption, then maybe * it was the set of queued requests? Pick the highest priority in * the queue (the first active priolist) and see if it deserves to be * running instead of ELSP[0]. * * The highest priority request in the queue can not be either * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same * context, it's priority would not exceed ELSP[0] aka last_prio. */ return queue_prio(&engine->execlists) > last_prio; } __maybe_unused static inline bool assert_priority_queue(const struct i915_request *prev, const struct i915_request *next) { /* * Without preemption, the prev may refer to the still active element * which we refuse to let go. * * Even with preemption, there are times when we think it is better not * to preempt and leave an ostensibly lower priority request in flight. */ if (i915_request_is_active(prev)) return true; return rq_prio(prev) >= rq_prio(next); } /* * The context descriptor encodes various attributes of a context, * including its GTT address and some flags. Because it's fairly * expensive to calculate, we'll just do it once and cache the result, * which remains valid until the context is unpinned. * * This is what a descriptor looks like, from LSB to MSB:: * * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) * bits 12-31: LRCA, GTT address of (the HWSP of) this context * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) * bits 53-54: mbz, reserved for use by hardware * bits 55-63: group ID, currently unused and set to 0 * * Starting from Gen11, the upper dword of the descriptor has a new format: * * bits 32-36: reserved * bits 37-47: SW context ID * bits 48:53: engine instance * bit 54: mbz, reserved for use by hardware * bits 55-60: SW counter * bits 61-63: engine class * * engine info, SW context ID and SW counter need to form a unique number * (Context ID) per lrc. */ static u64 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine) { u64 desc; desc = INTEL_LEGACY_32B_CONTEXT; if (i915_vm_is_4lvl(ce->vm)) desc = INTEL_LEGACY_64B_CONTEXT; desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT; desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE; if (IS_GEN(engine->i915, 8)) desc |= GEN8_CTX_L3LLC_COHERENT; desc |= i915_ggtt_offset(ce->state); /* bits 12-31 */ /* * The following 32bits are copied into the OA reports (dword 2). * Consider updating oa_get_render_ctx_id in i915_perf.c when changing * anything below. */ if (INTEL_GEN(engine->i915) >= 11) { desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT; /* bits 48-53 */ desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT; /* bits 61-63 */ } return desc; } static inline unsigned int dword_in_page(void *addr) { return offset_in_page(addr) / sizeof(u32); } static void set_offsets(u32 *regs, const u8 *data, const struct intel_engine_cs *engine, bool clear) #define NOP(x) (BIT(7) | (x)) #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6))) #define POSTED BIT(0) #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) #define REG16(x) \ (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ (((x) >> 2) & 0x7f) #define END(x) 0, (x) { const u32 base = engine->mmio_base; while (*data) { u8 count, flags; if (*data & BIT(7)) { /* skip */ count = *data++ & ~BIT(7); if (clear) memset32(regs, MI_NOOP, count); regs += count; continue; } count = *data & 0x3f; flags = *data >> 6; data++; *regs = MI_LOAD_REGISTER_IMM(count); if (flags & POSTED) *regs |= MI_LRI_FORCE_POSTED; if (INTEL_GEN(engine->i915) >= 11) *regs |= MI_LRI_CS_MMIO; regs++; GEM_BUG_ON(!count); do { u32 offset = 0; u8 v; do { v = *data++; offset <<= 7; offset |= v & ~BIT(7); } while (v & BIT(7)); regs[0] = base + (offset << 2); if (clear) regs[1] = 0; regs += 2; } while (--count); } if (clear) { u8 count = *++data; /* Clear past the tail for HW access */ GEM_BUG_ON(dword_in_page(regs) > count); memset32(regs, MI_NOOP, count - dword_in_page(regs)); /* Close the batch; used mainly by live_lrc_layout() */ *regs = MI_BATCH_BUFFER_END; if (INTEL_GEN(engine->i915) >= 10) *regs |= BIT(0); } } static const u8 gen8_xcs_offsets[] = { NOP(1), LRI(11, 0), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), NOP(9), LRI(9, 0), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(2, 0), REG16(0x200), REG(0x028), END(80) }; static const u8 gen9_xcs_offsets[] = { NOP(1), LRI(14, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), NOP(3), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(1, POSTED), REG16(0x200), NOP(13), LRI(44, POSTED), REG(0x028), REG(0x09c), REG(0x0c0), REG(0x178), REG(0x17c), REG16(0x358), REG(0x170), REG(0x150), REG(0x154), REG(0x158), REG16(0x41c), REG16(0x600), REG16(0x604), REG16(0x608), REG16(0x60c), REG16(0x610), REG16(0x614), REG16(0x618), REG16(0x61c), REG16(0x620), REG16(0x624), REG16(0x628), REG16(0x62c), REG16(0x630), REG16(0x634), REG16(0x638), REG16(0x63c), REG16(0x640), REG16(0x644), REG16(0x648), REG16(0x64c), REG16(0x650), REG16(0x654), REG16(0x658), REG16(0x65c), REG16(0x660), REG16(0x664), REG16(0x668), REG16(0x66c), REG16(0x670), REG16(0x674), REG16(0x678), REG16(0x67c), REG(0x068), END(176) }; static const u8 gen12_xcs_offsets[] = { NOP(1), LRI(13, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), NOP(5), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), END(80) }; static const u8 gen8_rcs_offsets[] = { NOP(1), LRI(14, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), NOP(3), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(1, 0), REG(0x0c8), END(80) }; static const u8 gen9_rcs_offsets[] = { NOP(1), LRI(14, POSTED), REG16(0x244), REG(0x34), REG(0x30), REG(0x38), REG(0x3c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), NOP(3), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), NOP(13), LRI(1, 0), REG(0xc8), NOP(13), LRI(44, POSTED), REG(0x28), REG(0x9c), REG(0xc0), REG(0x178), REG(0x17c), REG16(0x358), REG(0x170), REG(0x150), REG(0x154), REG(0x158), REG16(0x41c), REG16(0x600), REG16(0x604), REG16(0x608), REG16(0x60c), REG16(0x610), REG16(0x614), REG16(0x618), REG16(0x61c), REG16(0x620), REG16(0x624), REG16(0x628), REG16(0x62c), REG16(0x630), REG16(0x634), REG16(0x638), REG16(0x63c), REG16(0x640), REG16(0x644), REG16(0x648), REG16(0x64c), REG16(0x650), REG16(0x654), REG16(0x658), REG16(0x65c), REG16(0x660), REG16(0x664), REG16(0x668), REG16(0x66c), REG16(0x670), REG16(0x674), REG16(0x678), REG16(0x67c), REG(0x68), END(176) }; static const u8 gen11_rcs_offsets[] = { NOP(1), LRI(15, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x11c), REG(0x114), REG(0x118), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), NOP(1), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), LRI(1, POSTED), REG(0x1b0), NOP(10), LRI(1, 0), REG(0x0c8), END(80) }; static const u8 gen12_rcs_offsets[] = { NOP(1), LRI(13, POSTED), REG16(0x244), REG(0x034), REG(0x030), REG(0x038), REG(0x03c), REG(0x168), REG(0x140), REG(0x110), REG(0x1c0), REG(0x1c4), REG(0x1c8), REG(0x180), REG16(0x2b4), NOP(5), LRI(9, POSTED), REG16(0x3a8), REG16(0x28c), REG16(0x288), REG16(0x284), REG16(0x280), REG16(0x27c), REG16(0x278), REG16(0x274), REG16(0x270), LRI(3, POSTED), REG(0x1b0), REG16(0x5a8), REG16(0x5ac), NOP(6), LRI(1, 0), REG(0x0c8), END(80) }; #undef END #undef REG16 #undef REG #undef LRI #undef NOP static const u8 *reg_offsets(const struct intel_engine_cs *engine) { /* * The gen12+ lists only have the registers we program in the basic * default state. We rely on the context image using relative * addressing to automatic fixup the register state between the * physical engines for virtual engine. */ GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 && !intel_engine_has_relative_mmio(engine)); if (engine->class == RENDER_CLASS) { if (INTEL_GEN(engine->i915) >= 12) return gen12_rcs_offsets; else if (INTEL_GEN(engine->i915) >= 11) return gen11_rcs_offsets; else if (INTEL_GEN(engine->i915) >= 9) return gen9_rcs_offsets; else return gen8_rcs_offsets; } else { if (INTEL_GEN(engine->i915) >= 12) return gen12_xcs_offsets; else if (INTEL_GEN(engine->i915) >= 9) return gen9_xcs_offsets; else return gen8_xcs_offsets; } } static struct i915_request * __unwind_incomplete_requests(struct intel_engine_cs *engine) { struct i915_request *rq, *rn, *active = NULL; struct list_head *uninitialized_var(pl); int prio = I915_PRIORITY_INVALID; lockdep_assert_held(&engine->active.lock); list_for_each_entry_safe_reverse(rq, rn, &engine->active.requests, sched.link) { if (i915_request_completed(rq)) continue; /* XXX */ __i915_request_unsubmit(rq); /* * Push the request back into the queue for later resubmission. * If this request is not native to this physical engine (i.e. * it came from a virtual source), push it back onto the virtual * engine so that it can be moved across onto another physical * engine as load dictates. */ if (likely(rq->execution_mask == engine->mask)) { GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); if (rq_prio(rq) != prio) { prio = rq_prio(rq); pl = i915_sched_lookup_priolist(engine, prio); } GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); list_move(&rq->sched.link, pl); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); active = rq; } else { struct intel_engine_cs *owner = rq->context->engine; /* * Decouple the virtual breadcrumb before moving it * back to the virtual engine -- we don't want the * request to complete in the background and try * and cancel the breadcrumb on the virtual engine * (instead of the old engine where it is linked)! */ if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) { spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING); i915_request_cancel_breadcrumb(rq); spin_unlock(&rq->lock); } rq->engine = owner; owner->submit_request(rq); active = NULL; } } return active; } struct i915_request * execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) { struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); return __unwind_incomplete_requests(engine); } static inline void execlists_context_status_change(struct i915_request *rq, unsigned long status) { /* * Only used when GVT-g is enabled now. When GVT-g is disabled, * The compiler should eliminate this function as dead-code. */ if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) return; atomic_notifier_call_chain(&rq->engine->context_status_notifier, status, rq); } static void intel_engine_context_in(struct intel_engine_cs *engine) { unsigned long flags; if (READ_ONCE(engine->stats.enabled) == 0) return; write_seqlock_irqsave(&engine->stats.lock, flags); if (engine->stats.enabled > 0) { if (engine->stats.active++ == 0) engine->stats.start = ktime_get(); GEM_BUG_ON(engine->stats.active == 0); } write_sequnlock_irqrestore(&engine->stats.lock, flags); } static void intel_engine_context_out(struct intel_engine_cs *engine) { unsigned long flags; if (READ_ONCE(engine->stats.enabled) == 0) return; write_seqlock_irqsave(&engine->stats.lock, flags); if (engine->stats.enabled > 0) { ktime_t last; if (engine->stats.active && --engine->stats.active == 0) { /* * Decrement the active context count and in case GPU * is now idle add up to the running total. */ last = ktime_sub(ktime_get(), engine->stats.start); engine->stats.total = ktime_add(engine->stats.total, last); } else if (engine->stats.active == 0) { /* * After turning on engine stats, context out might be * the first event in which case we account from the * time stats gathering was turned on. */ last = ktime_sub(ktime_get(), engine->stats.enabled_at); engine->stats.total = ktime_add(engine->stats.total, last); } } write_sequnlock_irqrestore(&engine->stats.lock, flags); } static int lrc_ring_mi_mode(const struct intel_engine_cs *engine) { if (INTEL_GEN(engine->i915) >= 12) return 0x60; else if (INTEL_GEN(engine->i915) >= 9) return 0x54; else if (engine->class == RENDER_CLASS) return 0x58; else return -1; } static void execlists_check_context(const struct intel_context *ce, const struct intel_engine_cs *engine) { const struct intel_ring *ring = ce->ring; u32 *regs = ce->lrc_reg_state; bool valid = true; int x; if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) { pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n", engine->name, regs[CTX_RING_START], i915_ggtt_offset(ring->vma)); regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); valid = false; } if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) != (RING_CTL_SIZE(ring->size) | RING_VALID)) { pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n", engine->name, regs[CTX_RING_CTL], (u32)(RING_CTL_SIZE(ring->size) | RING_VALID)); regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; valid = false; } x = lrc_ring_mi_mode(engine); if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) { pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n", engine->name, regs[x + 1]); regs[x + 1] &= ~STOP_RING; regs[x + 1] |= STOP_RING << 16; valid = false; } WARN_ONCE(!valid, "Invalid lrc state found before submission\n"); } static void restore_default_state(struct intel_context *ce, struct intel_engine_cs *engine) { u32 *regs = ce->lrc_reg_state; if (engine->pinned_default_state) memcpy(regs, /* skip restoring the vanilla PPHWSP */ engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, engine->context_size - PAGE_SIZE); execlists_init_reg_state(regs, ce, engine, ce->ring, false); } static void reset_active(struct i915_request *rq, struct intel_engine_cs *engine) { struct intel_context * const ce = rq->context; u32 head; /* * The executing context has been cancelled. We want to prevent * further execution along this context and propagate the error on * to anything depending on its results. * * In __i915_request_submit(), we apply the -EIO and remove the * requests' payloads for any banned requests. But first, we must * rewind the context back to the start of the incomplete request so * that we do not jump back into the middle of the batch. * * We preserve the breadcrumbs and semaphores of the incomplete * requests so that inter-timeline dependencies (i.e other timelines) * remain correctly ordered. And we defer to __i915_request_submit() * so that all asynchronous waits are correctly handled. */ ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n", rq->fence.context, rq->fence.seqno); /* On resubmission of the active request, payload will be scrubbed */ if (i915_request_completed(rq)) head = rq->tail; else head = active_request(ce->timeline, rq)->head; head = intel_ring_wrap(ce->ring, head); /* Scrub the context image to prevent replaying the previous batch */ restore_default_state(ce, engine); __execlists_update_reg_state(ce, engine, head); /* We've switched away, so this should be a no-op, but intent matters */ ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; } static inline struct intel_engine_cs * __execlists_schedule_in(struct i915_request *rq) { struct intel_engine_cs * const engine = rq->engine; struct intel_context * const ce = rq->context; intel_context_get(ce); if (unlikely(intel_context_is_banned(ce))) reset_active(rq, engine); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) execlists_check_context(ce, engine); if (ce->tag) { /* Use a fixed tag for OA and friends */ ce->lrc_desc |= (u64)ce->tag << 32; } else { /* We don't need a strict matching tag, just different values */ ce->lrc_desc &= ~GENMASK_ULL(47, 37); ce->lrc_desc |= (u64)(++engine->context_tag % NUM_CONTEXT_TAG) << GEN11_SW_CTX_ID_SHIFT; BUILD_BUG_ON(NUM_CONTEXT_TAG > GEN12_MAX_CONTEXT_HW_ID); } __intel_gt_pm_get(engine->gt); execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); intel_engine_context_in(engine); return engine; } static inline struct i915_request * execlists_schedule_in(struct i915_request *rq, int idx) { struct intel_context * const ce = rq->context; struct intel_engine_cs *old; GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine)); trace_i915_request_in(rq, idx); old = READ_ONCE(ce->inflight); do { if (!old) { WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq)); break; } } while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old))); GEM_BUG_ON(intel_context_inflight(ce) != rq->engine); return i915_request_get(rq); } static void kick_siblings(struct i915_request *rq, struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); struct i915_request *next = READ_ONCE(ve->request); if (next && next->execution_mask & ~rq->execution_mask) tasklet_schedule(&ve->base.execlists.tasklet); } static inline void __execlists_schedule_out(struct i915_request *rq, struct intel_engine_cs * const engine) { struct intel_context * const ce = rq->context; /* * NB process_csb() is not under the engine->active.lock and hence * schedule_out can race with schedule_in meaning that we should * refrain from doing non-trivial work here. */ /* * If we have just completed this context, the engine may now be * idle and we want to re-enter powersaving. */ if (list_is_last(&rq->link, &ce->timeline->requests) && i915_request_completed(rq)) intel_engine_add_retire(engine, ce->timeline); intel_engine_context_out(engine); execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT); intel_gt_pm_put_async(engine->gt); /* * If this is part of a virtual engine, its next request may * have been blocked waiting for access to the active context. * We have to kick all the siblings again in case we need to * switch (e.g. the next request is not runnable on this * engine). Hopefully, we will already have submitted the next * request before the tasklet runs and do not need to rebuild * each virtual tree and kick everyone again. */ if (ce->engine != engine) kick_siblings(rq, ce); intel_context_put(ce); } static inline void execlists_schedule_out(struct i915_request *rq) { struct intel_context * const ce = rq->context; struct intel_engine_cs *cur, *old; trace_i915_request_out(rq); old = READ_ONCE(ce->inflight); do cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL; while (!try_cmpxchg(&ce->inflight, &old, cur)); if (!cur) __execlists_schedule_out(rq, old); i915_request_put(rq); } static u64 execlists_update_context(struct i915_request *rq) { struct intel_context *ce = rq->context; u64 desc = ce->lrc_desc; u32 tail, prev; /* * WaIdleLiteRestore:bdw,skl * * We should never submit the context with the same RING_TAIL twice * just in case we submit an empty ring, which confuses the HW. * * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of * the normal request to be able to always advance the RING_TAIL on * subsequent resubmissions (for lite restore). Should that fail us, * and we try and submit the same tail again, force the context * reload. * * If we need to return to a preempted context, we need to skip the * lite-restore and force it to reload the RING_TAIL. Otherwise, the * HW has a tendency to ignore us rewinding the TAIL to the end of * an earlier request. */ tail = intel_ring_set_tail(rq->ring, rq->tail); prev = ce->lrc_reg_state[CTX_RING_TAIL]; if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0)) desc |= CTX_DESC_FORCE_RESTORE; ce->lrc_reg_state[CTX_RING_TAIL] = tail; rq->tail = rq->wa_tail; /* * Make sure the context image is complete before we submit it to HW. * * Ostensibly, writes (including the WCB) should be flushed prior to * an uncached write such as our mmio register access, the empirical * evidence (esp. on Braswell) suggests that the WC write into memory * may not be visible to the HW prior to the completion of the UC * register write and that we may begin execution from the context * before its image is complete leading to invalid PD chasing. */ wmb(); ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE; return desc; } static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) { if (execlists->ctrl_reg) { writel(lower_32_bits(desc), execlists->submit_reg + port * 2); writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); } else { writel(upper_32_bits(desc), execlists->submit_reg); writel(lower_32_bits(desc), execlists->submit_reg); } } static __maybe_unused void trace_ports(const struct intel_engine_execlists *execlists, const char *msg, struct i915_request * const *ports) { const struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); if (!ports[0]) return; ENGINE_TRACE(engine, "%s { %llx:%lld%s, %llx:%lld }\n", msg, ports[0]->fence.context, ports[0]->fence.seqno, i915_request_completed(ports[0]) ? "!" : i915_request_started(ports[0]) ? "*" : "", ports[1] ? ports[1]->fence.context : 0, ports[1] ? ports[1]->fence.seqno : 0); } static __maybe_unused bool assert_pending_valid(const struct intel_engine_execlists *execlists, const char *msg) { struct i915_request * const *port, *rq; struct intel_context *ce = NULL; trace_ports(execlists, msg, execlists->pending); if (!execlists->pending[0]) { GEM_TRACE_ERR("Nothing pending for promotion!\n"); return false; } if (execlists->pending[execlists_num_ports(execlists)]) { GEM_TRACE_ERR("Excess pending[%d] for promotion!\n", execlists_num_ports(execlists)); return false; } for (port = execlists->pending; (rq = *port); port++) { unsigned long flags; bool ok = true; GEM_BUG_ON(!kref_read(&rq->fence.refcount)); GEM_BUG_ON(!i915_request_is_active(rq)); if (ce == rq->context) { GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n", ce->timeline->fence_context, port - execlists->pending); return false; } ce = rq->context; /* Hold tightly onto the lock to prevent concurrent retires! */ if (!spin_trylock_irqsave(&rq->lock, flags)) continue; if (i915_request_completed(rq)) goto unlock; if (i915_active_is_idle(&ce->active) && !intel_context_is_barrier(ce)) { GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n", ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } if (!i915_vma_is_pinned(ce->state)) { GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n", ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } if (!i915_vma_is_pinned(ce->ring->vma)) { GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n", ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } unlock: spin_unlock_irqrestore(&rq->lock, flags); if (!ok) return false; } return ce; } static void execlists_submit_ports(struct intel_engine_cs *engine) { struct intel_engine_execlists *execlists = &engine->execlists; unsigned int n; GEM_BUG_ON(!assert_pending_valid(execlists, "submit")); /* * We can skip acquiring intel_runtime_pm_get() here as it was taken * on our behalf by the request (see i915_gem_mark_busy()) and it will * not be relinquished until the device is idle (see * i915_gem_idle_work_handler()). As a precaution, we make sure * that all ELSP are drained i.e. we have processed the CSB, * before allowing ourselves to idle and calling intel_runtime_pm_put(). */ GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); /* * ELSQ note: the submit queue is not cleared after being submitted * to the HW so we need to make sure we always clean it up. This is * currently ensured by the fact that we always write the same number * of elsq entries, keep this in mind before changing the loop below. */ for (n = execlists_num_ports(execlists); n--; ) { struct i915_request *rq = execlists->pending[n]; write_desc(execlists, rq ? execlists_update_context(rq) : 0, n); } /* we need to manually load the submit queue */ if (execlists->ctrl_reg) writel(EL_CTRL_LOAD, execlists->ctrl_reg); } static bool ctx_single_port_submission(const struct intel_context *ce) { return (IS_ENABLED(CONFIG_DRM_I915_GVT) && intel_context_force_single_submission(ce)); } static bool can_merge_ctx(const struct intel_context *prev, const struct intel_context *next) { if (prev != next) return false; if (ctx_single_port_submission(prev)) return false; return true; } static bool can_merge_rq(const struct i915_request *prev, const struct i915_request *next) { GEM_BUG_ON(prev == next); GEM_BUG_ON(!assert_priority_queue(prev, next)); /* * We do not submit known completed requests. Therefore if the next * request is already completed, we can pretend to merge it in * with the previous context (and we will skip updating the ELSP * and tracking). Thus hopefully keeping the ELSP full with active * contexts, despite the best efforts of preempt-to-busy to confuse * us. */ if (i915_request_completed(next)) return true; if (unlikely((prev->fence.flags ^ next->fence.flags) & (BIT(I915_FENCE_FLAG_NOPREEMPT) | BIT(I915_FENCE_FLAG_SENTINEL)))) return false; if (!can_merge_ctx(prev->context, next->context)) return false; return true; } static void virtual_update_register_offsets(u32 *regs, struct intel_engine_cs *engine) { set_offsets(regs, reg_offsets(engine), engine, false); } static bool virtual_matches(const struct virtual_engine *ve, const struct i915_request *rq, const struct intel_engine_cs *engine) { const struct intel_engine_cs *inflight; if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ return false; /* * We track when the HW has completed saving the context image * (i.e. when we have seen the final CS event switching out of * the context) and must not overwrite the context image before * then. This restricts us to only using the active engine * while the previous virtualized request is inflight (so * we reuse the register offsets). This is a very small * hystersis on the greedy seelction algorithm. */ inflight = intel_context_inflight(&ve->context); if (inflight && inflight != engine) return false; return true; } static void virtual_xfer_breadcrumbs(struct virtual_engine *ve, struct intel_engine_cs *engine) { struct intel_engine_cs *old = ve->siblings[0]; /* All unattached (rq->engine == old) must already be completed */ spin_lock(&old->breadcrumbs.irq_lock); if (!list_empty(&ve->context.signal_link)) { list_move_tail(&ve->context.signal_link, &engine->breadcrumbs.signalers); intel_engine_signal_breadcrumbs(engine); } spin_unlock(&old->breadcrumbs.irq_lock); } #define for_each_waiter(p__, rq__) \ list_for_each_entry_lockless(p__, \ &(rq__)->sched.waiters_list, \ wait_link) static void defer_request(struct i915_request *rq, struct list_head * const pl) { LIST_HEAD(list); /* * We want to move the interrupted request to the back of * the round-robin list (i.e. its priority level), but * in doing so, we must then move all requests that were in * flight and were waiting for the interrupted request to * be run after it again. */ do { struct i915_dependency *p; GEM_BUG_ON(i915_request_is_active(rq)); list_move_tail(&rq->sched.link, pl); for_each_waiter(p, rq) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); /* Leave semaphores spinning on the other engines */ if (w->engine != rq->engine) continue; /* No waiter should start before its signaler */ GEM_BUG_ON(i915_request_started(w) && !i915_request_completed(rq)); GEM_BUG_ON(i915_request_is_active(w)); if (!i915_request_is_ready(w)) continue; if (rq_prio(w) < rq_prio(rq)) continue; GEM_BUG_ON(rq_prio(w) > rq_prio(rq)); list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static void defer_active(struct intel_engine_cs *engine) { struct i915_request *rq; rq = __unwind_incomplete_requests(engine); if (!rq) return; defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq))); } static bool need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq) { int hint; if (!intel_engine_has_timeslices(engine)) return false; hint = engine->execlists.queue_priority_hint; if (!list_is_last(&rq->sched.link, &engine->active.requests)) hint = max(hint, rq_prio(list_next_entry(rq, sched.link))); return hint >= effective_prio(rq); } static int switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq) { if (list_is_last(&rq->sched.link, &engine->active.requests)) return INT_MIN; return rq_prio(list_next_entry(rq, sched.link)); } static inline unsigned long timeslice(const struct intel_engine_cs *engine) { return READ_ONCE(engine->props.timeslice_duration_ms); } static unsigned long active_timeslice(const struct intel_engine_cs *engine) { const struct i915_request *rq = *engine->execlists.active; if (!rq || i915_request_completed(rq)) return 0; if (engine->execlists.switch_priority_hint < effective_prio(rq)) return 0; return timeslice(engine); } static void set_timeslice(struct intel_engine_cs *engine) { if (!intel_engine_has_timeslices(engine)) return; set_timer_ms(&engine->execlists.timer, active_timeslice(engine)); } static void start_timeslice(struct intel_engine_cs *engine) { struct intel_engine_execlists *execlists = &engine->execlists; execlists->switch_priority_hint = execlists->queue_priority_hint; if (timer_pending(&execlists->timer)) return; set_timer_ms(&execlists->timer, timeslice(engine)); } static void record_preemption(struct intel_engine_execlists *execlists) { (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); } static unsigned long active_preempt_timeout(struct intel_engine_cs *engine, const struct i915_request *rq) { if (!rq) return 0; /* Force a fast reset for terminated contexts (ignoring sysfs!) */ if (unlikely(intel_context_is_banned(rq->context))) return 1; return READ_ONCE(engine->props.preempt_timeout_ms); } static void set_preempt_timeout(struct intel_engine_cs *engine, const struct i915_request *rq) { if (!intel_engine_has_preempt_reset(engine)) return; set_timer_ms(&engine->execlists.preempt, active_preempt_timeout(engine, rq)); } static inline void clear_ports(struct i915_request **ports, int count) { memset_p((void **)ports, NULL, count); } static void execlists_dequeue(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request **port = execlists->pending; struct i915_request ** const last_port = port + execlists->port_mask; struct i915_request * const *active; struct i915_request *last; struct rb_node *rb; bool submit = false; /* * Hardware submission is through 2 ports. Conceptually each port * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is * static for a context, and unique to each, so we only execute * requests belonging to a single context from each ring. RING_HEAD * is maintained by the CS in the context image, it marks the place * where it got up to last time, and through RING_TAIL we tell the CS * where we want to execute up to this time. * * In this list the requests are in order of execution. Consecutive * requests from the same context are adjacent in the ringbuffer. We * can combine these requests into a single RING_TAIL update: * * RING_HEAD...req1...req2 * ^- RING_TAIL * since to execute req2 the CS must first execute req1. * * Our goal then is to point each port to the end of a consecutive * sequence of requests as being the most optimal (fewest wake ups * and context switches) submission. */ for (rb = rb_first_cached(&execlists->virtual); rb; ) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); struct i915_request *rq = READ_ONCE(ve->request); if (!rq) { /* lazily cleanup after another engine handled rq */ rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); rb = rb_first_cached(&execlists->virtual); continue; } if (!virtual_matches(ve, rq, engine)) { rb = rb_next(rb); continue; } break; } /* * If the queue is higher priority than the last * request in the currently active context, submit afresh. * We will resubmit again afterwards in case we need to split * the active context to interject the preemption request, * i.e. we will retrigger preemption following the ack in case * of trouble. */ active = READ_ONCE(execlists->active); while ((last = *active) && i915_request_completed(last)) active++; if (last) { if (need_preempt(engine, last, rb)) { ENGINE_TRACE(engine, "preempting last=%llx:%lld, prio=%d, hint=%d\n", last->fence.context, last->fence.seqno, last->sched.attr.priority, execlists->queue_priority_hint); record_preemption(execlists); /* * Don't let the RING_HEAD advance past the breadcrumb * as we unwind (and until we resubmit) so that we do * not accidentally tell it to go backwards. */ ring_set_paused(engine, 1); /* * Note that we have not stopped the GPU at this point, * so we are unwinding the incomplete requests as they * remain inflight and so by the time we do complete * the preemption, some of the unwound requests may * complete! */ __unwind_incomplete_requests(engine); last = NULL; } else if (need_timeslice(engine, last) && timer_expired(&engine->execlists.timer)) { ENGINE_TRACE(engine, "expired last=%llx:%lld, prio=%d, hint=%d\n", last->fence.context, last->fence.seqno, last->sched.attr.priority, execlists->queue_priority_hint); ring_set_paused(engine, 1); defer_active(engine); /* * Unlike for preemption, if we rewind and continue * executing the same context as previously active, * the order of execution will remain the same and * the tail will only advance. We do not need to * force a full context restore, as a lite-restore * is sufficient to resample the monotonic TAIL. * * If we switch to any other context, similarly we * will not rewind TAIL of current context, and * normal save/restore will preserve state and allow * us to later continue executing the same request. */ last = NULL; } else { /* * Otherwise if we already have a request pending * for execution after the current one, we can * just wait until the next CS event before * queuing more. In either case we will force a * lite-restore preemption event, but if we wait * we hopefully coalesce several updates into a single * submission. */ if (!list_is_last(&last->sched.link, &engine->active.requests)) { /* * Even if ELSP[1] is occupied and not worthy * of timeslices, our queue might be. */ start_timeslice(engine); return; } } } while (rb) { /* XXX virtual is always taking precedence */ struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); struct i915_request *rq; spin_lock(&ve->base.active.lock); rq = ve->request; if (unlikely(!rq)) { /* lost the race to a sibling */ spin_unlock(&ve->base.active.lock); rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); rb = rb_first_cached(&execlists->virtual); continue; } GEM_BUG_ON(rq != ve->request); GEM_BUG_ON(rq->engine != &ve->base); GEM_BUG_ON(rq->context != &ve->context); if (rq_prio(rq) >= queue_prio(execlists)) { if (!virtual_matches(ve, rq, engine)) { spin_unlock(&ve->base.active.lock); rb = rb_next(rb); continue; } if (last && !can_merge_rq(last, rq)) { spin_unlock(&ve->base.active.lock); start_timeslice(engine); return; /* leave this for another sibling */ } ENGINE_TRACE(engine, "virtual rq=%llx:%lld%s, new engine? %s\n", rq->fence.context, rq->fence.seqno, i915_request_completed(rq) ? "!" : i915_request_started(rq) ? "*" : "", yesno(engine != ve->siblings[0])); ve->request = NULL; ve->base.execlists.queue_priority_hint = INT_MIN; rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); GEM_BUG_ON(!(rq->execution_mask & engine->mask)); rq->engine = engine; if (engine != ve->siblings[0]) { u32 *regs = ve->context.lrc_reg_state; unsigned int n; GEM_BUG_ON(READ_ONCE(ve->context.inflight)); if (!intel_engine_has_relative_mmio(engine)) virtual_update_register_offsets(regs, engine); if (!list_empty(&ve->context.signals)) virtual_xfer_breadcrumbs(ve, engine); /* * Move the bound engine to the top of the list * for future execution. We then kick this * tasklet first before checking others, so that * we preferentially reuse this set of bound * registers. */ for (n = 1; n < ve->num_siblings; n++) { if (ve->siblings[n] == engine) { swap(ve->siblings[n], ve->siblings[0]); break; } } GEM_BUG_ON(ve->siblings[0] != engine); } if (__i915_request_submit(rq)) { submit = true; last = rq; } i915_request_put(rq); /* * Hmm, we have a bunch of virtual engine requests, * but the first one was already completed (thanks * preempt-to-busy!). Keep looking at the veng queue * until we have no more relevant requests (i.e. * the normal submit queue has higher priority). */ if (!submit) { spin_unlock(&ve->base.active.lock); rb = rb_first_cached(&execlists->virtual); continue; } } spin_unlock(&ve->base.active.lock); break; } while ((rb = rb_first_cached(&execlists->queue))) { struct i915_priolist *p = to_priolist(rb); struct i915_request *rq, *rn; int i; priolist_for_each_request_consume(rq, rn, p, i) { bool merge = true; /* * Can we combine this request with the current port? * It has to be the same context/ringbuffer and not * have any exceptions (e.g. GVT saying never to * combine contexts). * * If we can combine the requests, we can execute both * by updating the RING_TAIL to point to the end of the * second request, and so we never need to tell the * hardware about the first. */ if (last && !can_merge_rq(last, rq)) { /* * If we are on the second port and cannot * combine this request with the last, then we * are done. */ if (port == last_port) goto done; /* * We must not populate both ELSP[] with the * same LRCA, i.e. we must submit 2 different * contexts if we submit 2 ELSP. */ if (last->context == rq->context) goto done; if (i915_request_has_sentinel(last)) goto done; /* * If GVT overrides us we only ever submit * port[0], leaving port[1] empty. Note that we * also have to be careful that we don't queue * the same context (even though a different * request) to the second port. */ if (ctx_single_port_submission(last->context) || ctx_single_port_submission(rq->context)) goto done; merge = false; } if (__i915_request_submit(rq)) { if (!merge) { *port = execlists_schedule_in(last, port - execlists->pending); port++; last = NULL; } GEM_BUG_ON(last && !can_merge_ctx(last->context, rq->context)); submit = true; last = rq; } } rb_erase_cached(&p->node, &execlists->queue); i915_priolist_free(p); } done: /* * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. * * We choose the priority hint such that if we add a request of greater * priority than this, we kick the submission tasklet to decide on * the right order of submitting the requests to hardware. We must * also be prepared to reorder requests as they are in-flight on the * HW. We derive the priority hint then as the first "hole" in * the HW submission ports and if there are no available slots, * the priority of the lowest executing request, i.e. last. * * When we do receive a higher priority request ready to run from the * user, see queue_request(), the priority hint is bumped to that * request triggering preemption on the next dequeue (or subsequent * interrupt for secondary ports). */ execlists->queue_priority_hint = queue_prio(execlists); if (submit) { *port = execlists_schedule_in(last, port - execlists->pending); execlists->switch_priority_hint = switch_prio(engine, *execlists->pending); /* * Skip if we ended up with exactly the same set of requests, * e.g. trying to timeslice a pair of ordered contexts */ if (!memcmp(active, execlists->pending, (port - execlists->pending + 1) * sizeof(*port))) { do execlists_schedule_out(fetch_and_zero(port)); while (port-- != execlists->pending); goto skip_submit; } clear_ports(port + 1, last_port - port); execlists_submit_ports(engine); set_preempt_timeout(engine, *active); } else { skip_submit: ring_set_paused(engine, 0); } } static void cancel_port_requests(struct intel_engine_execlists * const execlists) { struct i915_request * const *port; for (port = execlists->pending; *port; port++) execlists_schedule_out(*port); clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending)); /* Mark the end of active before we overwrite *active */ for (port = xchg(&execlists->active, execlists->pending); *port; port++) execlists_schedule_out(*port); clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight)); WRITE_ONCE(execlists->active, execlists->inflight); } static inline void invalidate_csb_entries(const u32 *first, const u32 *last) { clflush((void *)first); clflush((void *)last); } static inline bool reset_in_progress(const struct intel_engine_execlists *execlists) { return unlikely(!__tasklet_is_enabled(&execlists->tasklet)); } /* * Starting with Gen12, the status has a new format: * * bit 0: switched to new queue * bit 1: reserved * bit 2: semaphore wait mode (poll or signal), only valid when * switch detail is set to "wait on semaphore" * bits 3-5: engine class * bits 6-11: engine instance * bits 12-14: reserved * bits 15-25: sw context id of the lrc the GT switched to * bits 26-31: sw counter of the lrc the GT switched to * bits 32-35: context switch detail * - 0: ctx complete * - 1: wait on sync flip * - 2: wait on vblank * - 3: wait on scanline * - 4: wait on semaphore * - 5: context preempted (not on SEMAPHORE_WAIT or * WAIT_FOR_EVENT) * bit 36: reserved * bits 37-43: wait detail (for switch detail 1 to 4) * bits 44-46: reserved * bits 47-57: sw context id of the lrc the GT switched away from * bits 58-63: sw counter of the lrc the GT switched away from */ static inline bool gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb) { u32 lower_dw = csb[0]; u32 upper_dw = csb[1]; bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw); bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw); bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE; /* * The context switch detail is not guaranteed to be 5 when a preemption * occurs, so we can't just check for that. The check below works for * all the cases we care about, including preemptions of WAIT * instructions and lite-restore. Preempt-to-idle via the CTRL register * would require some extra handling, but we don't support that. */ if (!ctx_away_valid || new_queue) { GEM_BUG_ON(!ctx_to_valid); return true; } /* * switch detail = 5 is covered by the case above and we do not expect a * context switch on an unsuccessful wait instruction since we always * use polling mode. */ GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw)); return false; } static inline bool gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb) { return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED); } static void process_csb(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; const u32 * const buf = execlists->csb_status; const u8 num_entries = execlists->csb_size; u8 head, tail; /* * As we modify our execlists state tracking we require exclusive * access. Either we are inside the tasklet, or the tasklet is disabled * and we assume that is only inside the reset paths and so serialised. */ GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) && !reset_in_progress(execlists)); GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine)); /* * Note that csb_write, csb_status may be either in HWSP or mmio. * When reading from the csb_write mmio register, we have to be * careful to only use the GEN8_CSB_WRITE_PTR portion, which is * the low 4bits. As it happens we know the next 4bits are always * zero and so we can simply masked off the low u8 of the register * and treat it identically to reading from the HWSP (without having * to use explicit shifting and masking, and probably bifurcating * the code to handle the legacy mmio read). */ head = execlists->csb_head; tail = READ_ONCE(*execlists->csb_write); ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail); if (unlikely(head == tail)) return; /* * Hopefully paired with a wmb() in HW! * * We must complete the read of the write pointer before any reads * from the CSB, so that we do not see stale values. Without an rmb * (lfence) the HW may speculatively perform the CSB[] reads *before* * we perform the READ_ONCE(*csb_write). */ rmb(); do { bool promote; if (++head == num_entries) head = 0; /* * We are flying near dragons again. * * We hold a reference to the request in execlist_port[] * but no more than that. We are operating in softirq * context and so cannot hold any mutex or sleep. That * prevents us stopping the requests we are processing * in port[] from being retired simultaneously (the * breadcrumb will be complete before we see the * context-switch). As we only hold the reference to the * request, any pointer chasing underneath the request * is subject to a potential use-after-free. Thus we * store all of the bookkeeping within port[] as * required, and avoid using unguarded pointers beneath * request itself. The same applies to the atomic * status notifier. */ ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n", head, buf[2 * head + 0], buf[2 * head + 1]); if (INTEL_GEN(engine->i915) >= 12) promote = gen12_csb_parse(execlists, buf + 2 * head); else promote = gen8_csb_parse(execlists, buf + 2 * head); if (promote) { struct i915_request * const *old = execlists->active; /* Point active to the new ELSP; prevent overwriting */ WRITE_ONCE(execlists->active, execlists->pending); if (!inject_preempt_hang(execlists)) ring_set_paused(engine, 0); /* cancel old inflight, prepare for switch */ trace_ports(execlists, "preempted", old); while (*old) execlists_schedule_out(*old++); /* switch pending to inflight */ GEM_BUG_ON(!assert_pending_valid(execlists, "promote")); WRITE_ONCE(execlists->active, memcpy(execlists->inflight, execlists->pending, execlists_num_ports(execlists) * sizeof(*execlists->pending))); WRITE_ONCE(execlists->pending[0], NULL); } else { GEM_BUG_ON(!*execlists->active); /* port0 completed, advanced to port1 */ trace_ports(execlists, "completed", execlists->active); /* * We rely on the hardware being strongly * ordered, that the breadcrumb write is * coherent (visible from the CPU) before the * user interrupt and CSB is processed. */ GEM_BUG_ON(!i915_request_completed(*execlists->active) && !reset_in_progress(execlists)); execlists_schedule_out(*execlists->active++); GEM_BUG_ON(execlists->active - execlists->inflight > execlists_num_ports(execlists)); } } while (head != tail); execlists->csb_head = head; set_timeslice(engine); /* * Gen11 has proven to fail wrt global observation point between * entry and tail update, failing on the ordering and thus * we see an old entry in the context status buffer. * * Forcibly evict out entries for the next gpu csb update, * to increase the odds that we get a fresh entries with non * working hardware. The cost for doing so comes out mostly with * the wash as hardware, working or not, will need to do the * invalidation before. */ invalidate_csb_entries(&buf[0], &buf[num_entries - 1]); } static void __execlists_submission_tasklet(struct intel_engine_cs *const engine) { lockdep_assert_held(&engine->active.lock); if (!engine->execlists.pending[0]) { rcu_read_lock(); /* protect peeking at execlists->active */ execlists_dequeue(engine); rcu_read_unlock(); } } static void __execlists_hold(struct i915_request *rq) { LIST_HEAD(list); do { struct i915_dependency *p; if (i915_request_is_active(rq)) __i915_request_unsubmit(rq); RQ_TRACE(rq, "on hold\n"); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); list_move_tail(&rq->sched.link, &rq->engine->active.hold); i915_request_set_hold(rq); list_for_each_entry(p, &rq->sched.waiters_list, wait_link) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); /* Leave semaphores spinning on the other engines */ if (w->engine != rq->engine) continue; if (!i915_request_is_ready(w)) continue; if (i915_request_completed(w)) continue; if (i915_request_on_hold(rq)) continue; list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static bool execlists_hold(struct intel_engine_cs *engine, struct i915_request *rq) { spin_lock_irq(&engine->active.lock); if (i915_request_completed(rq)) { /* too late! */ rq = NULL; goto unlock; } if (rq->engine != engine) { /* preempted virtual engine */ struct virtual_engine *ve = to_virtual_engine(rq->engine); /* * intel_context_inflight() is only protected by virtue * of process_csb() being called only by the tasklet (or * directly from inside reset while the tasklet is suspended). * Assert that neither of those are allowed to run while we * poke at the request queues. */ GEM_BUG_ON(!reset_in_progress(&engine->execlists)); /* * An unsubmitted request along a virtual engine will * remain on the active (this) engine until we are able * to process the context switch away (and so mark the * context as no longer in flight). That cannot have happened * yet, otherwise we would not be hanging! */ spin_lock(&ve->base.active.lock); GEM_BUG_ON(intel_context_inflight(rq->context) != engine); GEM_BUG_ON(ve->request != rq); ve->request = NULL; spin_unlock(&ve->base.active.lock); i915_request_put(rq); rq->engine = engine; } /* * Transfer this request onto the hold queue to prevent it * being resumbitted to HW (and potentially completed) before we have * released it. Since we may have already submitted following * requests, we need to remove those as well. */ GEM_BUG_ON(i915_request_on_hold(rq)); GEM_BUG_ON(rq->engine != engine); __execlists_hold(rq); unlock: spin_unlock_irq(&engine->active.lock); return rq; } static bool hold_request(const struct i915_request *rq) { struct i915_dependency *p; /* * If one of our ancestors is on hold, we must also be on hold, * otherwise we will bypass it and execute before it. */ list_for_each_entry(p, &rq->sched.signalers_list, signal_link) { const struct i915_request *s = container_of(p->signaler, typeof(*s), sched); if (s->engine != rq->engine) continue; if (i915_request_on_hold(s)) return true; } return false; } static void __execlists_unhold(struct i915_request *rq) { LIST_HEAD(list); do { struct i915_dependency *p; GEM_BUG_ON(!i915_request_on_hold(rq)); GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); i915_request_clear_hold(rq); list_move_tail(&rq->sched.link, i915_sched_lookup_priolist(rq->engine, rq_prio(rq))); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); RQ_TRACE(rq, "hold release\n"); /* Also release any children on this engine that are ready */ list_for_each_entry(p, &rq->sched.waiters_list, wait_link) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); if (w->engine != rq->engine) continue; if (!i915_request_on_hold(rq)) continue; /* Check that no other parents are also on hold */ if (hold_request(rq)) continue; list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static void execlists_unhold(struct intel_engine_cs *engine, struct i915_request *rq) { spin_lock_irq(&engine->active.lock); /* * Move this request back to the priority queue, and all of its * children and grandchildren that were suspended along with it. */ __execlists_unhold(rq); if (rq_prio(rq) > engine->execlists.queue_priority_hint) { engine->execlists.queue_priority_hint = rq_prio(rq); tasklet_hi_schedule(&engine->execlists.tasklet); } spin_unlock_irq(&engine->active.lock); } struct execlists_capture { struct work_struct work; struct i915_request *rq; struct i915_gpu_coredump *error; }; static void execlists_capture_work(struct work_struct *work) { struct execlists_capture *cap = container_of(work, typeof(*cap), work); const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN; struct intel_engine_cs *engine = cap->rq->engine; struct intel_gt_coredump *gt = cap->error->gt; struct intel_engine_capture_vma *vma; /* Compress all the objects attached to the request, slow! */ vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp); if (vma) { struct i915_vma_compress *compress = i915_vma_capture_prepare(gt); intel_engine_coredump_add_vma(gt->engine, vma, compress); i915_vma_capture_finish(gt, compress); } gt->simulated = gt->engine->simulated; cap->error->simulated = gt->simulated; /* Publish the error state, and announce it to the world */ i915_error_state_store(cap->error); i915_gpu_coredump_put(cap->error); /* Return this request and all that depend upon it for signaling */ execlists_unhold(engine, cap->rq); i915_request_put(cap->rq); kfree(cap); } static struct execlists_capture *capture_regs(struct intel_engine_cs *engine) { const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; struct execlists_capture *cap; cap = kmalloc(sizeof(*cap), gfp); if (!cap) return NULL; cap->error = i915_gpu_coredump_alloc(engine->i915, gfp); if (!cap->error) goto err_cap; cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp); if (!cap->error->gt) goto err_gpu; cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp); if (!cap->error->gt->engine) goto err_gt; return cap; err_gt: kfree(cap->error->gt); err_gpu: kfree(cap->error); err_cap: kfree(cap); return NULL; } static bool execlists_capture(struct intel_engine_cs *engine) { struct execlists_capture *cap; if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)) return true; /* * We need to _quickly_ capture the engine state before we reset. * We are inside an atomic section (softirq) here and we are delaying * the forced preemption event. */ cap = capture_regs(engine); if (!cap) return true; cap->rq = execlists_active(&engine->execlists); GEM_BUG_ON(!cap->rq); rcu_read_lock(); cap->rq = active_request(cap->rq->context->timeline, cap->rq); cap->rq = i915_request_get_rcu(cap->rq); rcu_read_unlock(); if (!cap->rq) goto err_free; /* * Remove the request from the execlists queue, and take ownership * of the request. We pass it to our worker who will _slowly_ compress * all the pages the _user_ requested for debugging their batch, after * which we return it to the queue for signaling. * * By removing them from the execlists queue, we also remove the * requests from being processed by __unwind_incomplete_requests() * during the intel_engine_reset(), and so they will *not* be replayed * afterwards. * * Note that because we have not yet reset the engine at this point, * it is possible for the request that we have identified as being * guilty, did in fact complete and we will then hit an arbitration * point allowing the outstanding preemption to succeed. The likelihood * of that is very low (as capturing of the engine registers should be * fast enough to run inside an irq-off atomic section!), so we will * simply hold that request accountable for being non-preemptible * long enough to force the reset. */ if (!execlists_hold(engine, cap->rq)) goto err_rq; INIT_WORK(&cap->work, execlists_capture_work); schedule_work(&cap->work); return true; err_rq: i915_request_put(cap->rq); err_free: i915_gpu_coredump_put(cap->error); kfree(cap); return false; } static noinline void preempt_reset(struct intel_engine_cs *engine) { const unsigned int bit = I915_RESET_ENGINE + engine->id; unsigned long *lock = &engine->gt->reset.flags; if (i915_modparams.reset < 3) return; if (test_and_set_bit(bit, lock)) return; /* Mark this tasklet as disabled to avoid waiting for it to complete */ tasklet_disable_nosync(&engine->execlists.tasklet); ENGINE_TRACE(engine, "preempt timeout %lu+%ums\n", READ_ONCE(engine->props.preempt_timeout_ms), jiffies_to_msecs(jiffies - engine->execlists.preempt.expires)); ring_set_paused(engine, 1); /* Freeze the current request in place */ if (execlists_capture(engine)) intel_engine_reset(engine, "preemption time out"); else ring_set_paused(engine, 0); tasklet_enable(&engine->execlists.tasklet); clear_and_wake_up_bit(bit, lock); } static bool preempt_timeout(const struct intel_engine_cs *const engine) { const struct timer_list *t = &engine->execlists.preempt; if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) return false; if (!timer_expired(t)) return false; return READ_ONCE(engine->execlists.pending[0]); } /* * Check the unread Context Status Buffers and manage the submission of new * contexts to the ELSP accordingly. */ static void execlists_submission_tasklet(unsigned long data) { struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; bool timeout = preempt_timeout(engine); process_csb(engine); if (!READ_ONCE(engine->execlists.pending[0]) || timeout) { unsigned long flags; spin_lock_irqsave(&engine->active.lock, flags); __execlists_submission_tasklet(engine); spin_unlock_irqrestore(&engine->active.lock, flags); /* Recheck after serialising with direct-submission */ if (timeout && preempt_timeout(engine)) preempt_reset(engine); } } static void __execlists_kick(struct intel_engine_execlists *execlists) { /* Kick the tasklet for some interrupt coalescing and reset handling */ tasklet_hi_schedule(&execlists->tasklet); } #define execlists_kick(t, member) \ __execlists_kick(container_of(t, struct intel_engine_execlists, member)) static void execlists_timeslice(struct timer_list *timer) { execlists_kick(timer, timer); } static void execlists_preempt(struct timer_list *timer) { execlists_kick(timer, preempt); } static void queue_request(struct intel_engine_cs *engine, struct i915_request *rq) { GEM_BUG_ON(!list_empty(&rq->sched.link)); list_add_tail(&rq->sched.link, i915_sched_lookup_priolist(engine, rq_prio(rq))); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); } static void __submit_queue_imm(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; if (reset_in_progress(execlists)) return; /* defer until we restart the engine following reset */ if (execlists->tasklet.func == execlists_submission_tasklet) __execlists_submission_tasklet(engine); else tasklet_hi_schedule(&execlists->tasklet); } static void submit_queue(struct intel_engine_cs *engine, const struct i915_request *rq) { struct intel_engine_execlists *execlists = &engine->execlists; if (rq_prio(rq) <= execlists->queue_priority_hint) return; execlists->queue_priority_hint = rq_prio(rq); __submit_queue_imm(engine); } static bool ancestor_on_hold(const struct intel_engine_cs *engine, const struct i915_request *rq) { GEM_BUG_ON(i915_request_on_hold(rq)); return !list_empty(&engine->active.hold) && hold_request(rq); } static void execlists_submit_request(struct i915_request *request) { struct intel_engine_cs *engine = request->engine; unsigned long flags; /* Will be called from irq-context when using foreign fences. */ spin_lock_irqsave(&engine->active.lock, flags); if (unlikely(ancestor_on_hold(engine, request))) { list_add_tail(&request->sched.link, &engine->active.hold); i915_request_set_hold(request); } else { queue_request(engine, request); GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); GEM_BUG_ON(list_empty(&request->sched.link)); submit_queue(engine, request); } spin_unlock_irqrestore(&engine->active.lock, flags); } static void __execlists_context_fini(struct intel_context *ce) { intel_ring_put(ce->ring); i915_vma_put(ce->state); } static void execlists_context_destroy(struct kref *kref) { struct intel_context *ce = container_of(kref, typeof(*ce), ref); GEM_BUG_ON(!i915_active_is_idle(&ce->active)); GEM_BUG_ON(intel_context_is_pinned(ce)); if (ce->state) __execlists_context_fini(ce); intel_context_fini(ce); intel_context_free(ce); } static void set_redzone(void *vaddr, const struct intel_engine_cs *engine) { if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; vaddr += engine->context_size; memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE); } static void check_redzone(const void *vaddr, const struct intel_engine_cs *engine) { if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; vaddr += engine->context_size; if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE)) dev_err_once(engine->i915->drm.dev, "%s context redzone overwritten!\n", engine->name); } static void execlists_context_unpin(struct intel_context *ce) { check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE, ce->engine); i915_gem_object_unpin_map(ce->state->obj); } static void __execlists_update_reg_state(const struct intel_context *ce, const struct intel_engine_cs *engine, u32 head) { struct intel_ring *ring = ce->ring; u32 *regs = ce->lrc_reg_state; GEM_BUG_ON(!intel_ring_offset_valid(ring, head)); GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); regs[CTX_RING_HEAD] = head; regs[CTX_RING_TAIL] = ring->tail; /* RPCS */ if (engine->class == RENDER_CLASS) { regs[CTX_R_PWR_CLK_STATE] = intel_sseu_make_rpcs(engine->i915, &ce->sseu); i915_oa_init_reg_state(ce, engine); } } static int __execlists_context_pin(struct intel_context *ce, struct intel_engine_cs *engine) { void *vaddr; GEM_BUG_ON(!ce->state); GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); vaddr = i915_gem_object_pin_map(ce->state->obj, i915_coherent_map_type(engine->i915) | I915_MAP_OVERRIDE); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); ce->lrc_desc = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE; ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; __execlists_update_reg_state(ce, engine, ce->ring->tail); return 0; } static int execlists_context_pin(struct intel_context *ce) { return __execlists_context_pin(ce, ce->engine); } static int execlists_context_alloc(struct intel_context *ce) { return __execlists_context_alloc(ce, ce->engine); } static void execlists_context_reset(struct intel_context *ce) { CE_TRACE(ce, "reset\n"); GEM_BUG_ON(!intel_context_is_pinned(ce)); /* * Because we emit WA_TAIL_DWORDS there may be a disparity * between our bookkeeping in ce->ring->head and ce->ring->tail and * that stored in context. As we only write new commands from * ce->ring->tail onwards, everything before that is junk. If the GPU * starts reading from its RING_HEAD from the context, it may try to * execute that junk and die. * * The contexts that are stilled pinned on resume belong to the * kernel, and are local to each engine. All other contexts will * have their head/tail sanitized upon pinning before use, so they * will never see garbage, * * So to avoid that we reset the context images upon resume. For * simplicity, we just zero everything out. */ intel_ring_reset(ce->ring, ce->ring->emit); /* Scrub away the garbage */ execlists_init_reg_state(ce->lrc_reg_state, ce, ce->engine, ce->ring, true); __execlists_update_reg_state(ce, ce->engine, ce->ring->tail); ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; } static const struct intel_context_ops execlists_context_ops = { .alloc = execlists_context_alloc, .pin = execlists_context_pin, .unpin = execlists_context_unpin, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .reset = execlists_context_reset, .destroy = execlists_context_destroy, }; static int gen8_emit_init_breadcrumb(struct i915_request *rq) { u32 *cs; GEM_BUG_ON(!i915_request_timeline(rq)->has_initial_breadcrumb); cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); /* * Check if we have been preempted before we even get started. * * After this point i915_request_started() reports true, even if * we get preempted and so are no longer running. */ *cs++ = MI_ARB_CHECK; *cs++ = MI_NOOP; *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = i915_request_timeline(rq)->hwsp_offset; *cs++ = 0; *cs++ = rq->fence.seqno - 1; intel_ring_advance(rq, cs); /* Record the updated position of the request's payload */ rq->infix = intel_ring_offset(rq, cs); return 0; } static int execlists_request_alloc(struct i915_request *request) { int ret; GEM_BUG_ON(!intel_context_is_pinned(request->context)); /* * Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ request->reserved_space += EXECLISTS_REQUEST_SIZE; /* * Note that after this point, we have committed to using * this request as it is being used to both track the * state of engine initialisation and liveness of the * golden renderstate above. Think twice before you try * to cancel/unwind this request now. */ /* Unconditionally invalidate GPU caches and TLBs. */ ret = request->engine->emit_flush(request, EMIT_INVALIDATE); if (ret) return ret; request->reserved_space -= EXECLISTS_REQUEST_SIZE; return 0; } /* * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after * PIPE_CONTROL instruction. This is required for the flush to happen correctly * but there is a slight complication as this is applied in WA batch where the * values are only initialized once so we cannot take register value at the * beginning and reuse it further; hence we save its value to memory, upload a * constant value with bit21 set and then we restore it back with the saved value. * To simplify the WA, a constant value is formed by using the default value * of this register. This shouldn't be a problem because we are only modifying * it for a short period and this batch in non-premptible. We can ofcourse * use additional instructions that read the actual value of the register * at that time and set our bit of interest but it makes the WA complicated. * * This WA is also required for Gen9 so extracting as a function avoids * code duplication. */ static u32 * gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) { /* NB no one else is allowed to scribble over scratch + 256! */ *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); *batch++ = intel_gt_scratch_offset(engine->gt, INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); *batch++ = 0; *batch++ = MI_LOAD_REGISTER_IMM(1); *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; batch = gen8_emit_pipe_control(batch, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_DC_FLUSH_ENABLE, 0); *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); *batch++ = intel_gt_scratch_offset(engine->gt, INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); *batch++ = 0; return batch; } /* * Typically we only have one indirect_ctx and per_ctx batch buffer which are * initialized at the beginning and shared across all contexts but this field * helps us to have multiple batches at different offsets and select them based * on a criteria. At the moment this batch always start at the beginning of the page * and at this point we don't have multiple wa_ctx batch buffers. * * The number of WA applied are not known at the beginning; we use this field * to return the no of DWORDS written. * * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END * so it adds NOOPs as padding to make it cacheline aligned. * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together * makes a complete batch buffer. */ static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) { /* WaDisableCtxRestoreArbitration:bdw,chv */ *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ if (IS_BROADWELL(engine->i915)) batch = gen8_emit_flush_coherentl3_wa(engine, batch); /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ /* Actual scratch location is at 128 bytes offset */ batch = gen8_emit_pipe_control(batch, PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_STORE_DATA_INDEX | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE, LRC_PPHWSP_SCRATCH_ADDR); *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; /* Pad to end of cacheline */ while ((unsigned long)batch % CACHELINE_BYTES) *batch++ = MI_NOOP; /* * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because * execution depends on the length specified in terms of cache lines * in the register CTX_RCS_INDIRECT_CTX */ return batch; } struct lri { i915_reg_t reg; u32 value; }; static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) { GEM_BUG_ON(!count || count > 63); *batch++ = MI_LOAD_REGISTER_IMM(count); do { *batch++ = i915_mmio_reg_offset(lri->reg); *batch++ = lri->value; } while (lri++, --count); *batch++ = MI_NOOP; return batch; } static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) { static const struct lri lri[] = { /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ { COMMON_SLICE_CHICKEN2, __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 0), }, /* BSpec: 11391 */ { FF_SLICE_CHICKEN, __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), }, /* BSpec: 11299 */ { _3D_CHICKEN3, __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), } }; *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ batch = gen8_emit_flush_coherentl3_wa(engine, batch); /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */ batch = gen8_emit_pipe_control(batch, PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_STORE_DATA_INDEX | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE, LRC_PPHWSP_SCRATCH_ADDR); batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); /* WaMediaPoolStateCmdInWABB:bxt,glk */ if (HAS_POOLED_EU(engine->i915)) { /* * EU pool configuration is setup along with golden context * during context initialization. This value depends on * device type (2x6 or 3x6) and needs to be updated based * on which subslice is disabled especially for 2x6 * devices, however it is safe to load default * configuration of 3x6 device instead of masking off * corresponding bits because HW ignores bits of a disabled * subslice and drops down to appropriate config. Please * see render_state_setup() in i915_gem_render_state.c for * possible configurations, to avoid duplication they are * not shown here again. */ *batch++ = GEN9_MEDIA_POOL_STATE; *batch++ = GEN9_MEDIA_POOL_ENABLE; *batch++ = 0x00777000; *batch++ = 0; *batch++ = 0; *batch++ = 0; } *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; /* Pad to end of cacheline */ while ((unsigned long)batch % CACHELINE_BYTES) *batch++ = MI_NOOP; return batch; } static u32 * gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) { int i; /* * WaPipeControlBefore3DStateSamplePattern: cnl * * Ensure the engine is idle prior to programming a * 3DSTATE_SAMPLE_PATTERN during a context restore. */ batch = gen8_emit_pipe_control(batch, PIPE_CONTROL_CS_STALL, 0); /* * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is * confusing. Since gen8_emit_pipe_control() already advances the * batch by 6 dwords, we advance the other 10 here, completing a * cacheline. It's not clear if the workaround requires this padding * before other commands, or if it's just the regular padding we would * already have for the workaround bb, so leave it here for now. */ for (i = 0; i < 10; i++) *batch++ = MI_NOOP; /* Pad to end of cacheline */ while ((unsigned long)batch % CACHELINE_BYTES) *batch++ = MI_NOOP; return batch; } #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE) static int lrc_setup_wa_ctx(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); if (err) goto err; engine->wa_ctx.vma = vma; return 0; err: i915_gem_object_put(obj); return err; } static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine) { i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); } typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); static int intel_init_workaround_bb(struct intel_engine_cs *engine) { struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx, &wa_ctx->per_ctx }; wa_bb_func_t wa_bb_fn[2]; struct page *page; void *batch, *batch_ptr; unsigned int i; int ret; if (engine->class != RENDER_CLASS) return 0; switch (INTEL_GEN(engine->i915)) { case 12: case 11: return 0; case 10: wa_bb_fn[0] = gen10_init_indirectctx_bb; wa_bb_fn[1] = NULL; break; case 9: wa_bb_fn[0] = gen9_init_indirectctx_bb; wa_bb_fn[1] = NULL; break; case 8: wa_bb_fn[0] = gen8_init_indirectctx_bb; wa_bb_fn[1] = NULL; break; default: MISSING_CASE(INTEL_GEN(engine->i915)); return 0; } ret = lrc_setup_wa_ctx(engine); if (ret) { DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); return ret; } page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0); batch = batch_ptr = kmap_atomic(page); /* * Emit the two workaround batch buffers, recording the offset from the * start of the workaround batch buffer object for each and their * respective sizes. */ for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { wa_bb[i]->offset = batch_ptr - batch; if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) { ret = -EINVAL; break; } if (wa_bb_fn[i]) batch_ptr = wa_bb_fn[i](engine, batch_ptr); wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); } BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE); kunmap_atomic(batch); if (ret) lrc_destroy_wa_ctx(engine); return ret; } static void enable_execlists(struct intel_engine_cs *engine) { u32 mode; assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ if (INTEL_GEN(engine->i915) >= 11) mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE); else mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE); ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); ENGINE_WRITE_FW(engine, RING_HWS_PGA, i915_ggtt_offset(engine->status_page.vma)); ENGINE_POSTING_READ(engine, RING_HWS_PGA); engine->context_tag = 0; } static bool unexpected_starting_state(struct intel_engine_cs *engine) { bool unexpected = false; if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) { DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n"); unexpected = true; } return unexpected; } static int execlists_resume(struct intel_engine_cs *engine) { intel_engine_apply_workarounds(engine); intel_engine_apply_whitelist(engine); intel_mocs_init_engine(engine); intel_engine_reset_breadcrumbs(engine); if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) { struct drm_printer p = drm_debug_printer(__func__); intel_engine_dump(engine, &p, NULL); } enable_execlists(engine); return 0; } static void execlists_reset_prepare(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; unsigned long flags; ENGINE_TRACE(engine, "depth<-%d\n", atomic_read(&execlists->tasklet.count)); /* * Prevent request submission to the hardware until we have * completed the reset in i915_gem_reset_finish(). If a request * is completed by one engine, it may then queue a request * to a second via its execlists->tasklet *just* as we are * calling engine->resume() and also writing the ELSP. * Turning off the execlists->tasklet until the reset is over * prevents the race. */ __tasklet_disable_sync_once(&execlists->tasklet); GEM_BUG_ON(!reset_in_progress(execlists)); /* And flush any current direct submission. */ spin_lock_irqsave(&engine->active.lock, flags); spin_unlock_irqrestore(&engine->active.lock, flags); /* * We stop engines, otherwise we might get failed reset and a * dead gpu (on elk). Also as modern gpu as kbl can suffer * from system hang if batchbuffer is progressing when * the reset is issued, regardless of READY_TO_RESET ack. * Thus assume it is best to stop engines on all gens * where we have a gpu reset. * * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) * * FIXME: Wa for more modern gens needs to be validated */ intel_engine_stop_cs(engine); } static void reset_csb_pointers(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; const unsigned int reset_value = execlists->csb_size - 1; ring_set_paused(engine, 0); /* * After a reset, the HW starts writing into CSB entry [0]. We * therefore have to set our HEAD pointer back one entry so that * the *first* entry we check is entry 0. To complicate this further, * as we don't wait for the first interrupt after reset, we have to * fake the HW write to point back to the last entry so that our * inline comparison of our cached head position against the last HW * write works even before the first interrupt. */ execlists->csb_head = reset_value; WRITE_ONCE(*execlists->csb_write, reset_value); wmb(); /* Make sure this is visible to HW (paranoia?) */ /* * Sometimes Icelake forgets to reset its pointers on a GPU reset. * Bludgeon them with a mmio update to be sure. */ ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, reset_value << 8 | reset_value); ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); invalidate_csb_entries(&execlists->csb_status[0], &execlists->csb_status[reset_value]); } static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine) { int x; x = lrc_ring_mi_mode(engine); if (x != -1) { regs[x + 1] &= ~STOP_RING; regs[x + 1] |= STOP_RING << 16; } } static void __execlists_reset_reg_state(const struct intel_context *ce, const struct intel_engine_cs *engine) { u32 *regs = ce->lrc_reg_state; __reset_stop_ring(regs, engine); } static void __execlists_reset(struct intel_engine_cs *engine, bool stalled) { struct intel_engine_execlists * const execlists = &engine->execlists; struct intel_context *ce; struct i915_request *rq; u32 head; mb(); /* paranoia: read the CSB pointers from after the reset */ clflush(execlists->csb_write); mb(); process_csb(engine); /* drain preemption events */ /* Following the reset, we need to reload the CSB read/write pointers */ reset_csb_pointers(engine); /* * Save the currently executing context, even if we completed * its request, it was still running at the time of the * reset and will have been clobbered. */ rq = execlists_active(execlists); if (!rq) goto unwind; /* We still have requests in-flight; the engine should be active */ GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); ce = rq->context; GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); if (i915_request_completed(rq)) { /* Idle context; tidy up the ring so we can restart afresh */ head = intel_ring_wrap(ce->ring, rq->tail); goto out_replay; } /* Context has requests still in-flight; it should not be idle! */ GEM_BUG_ON(i915_active_is_idle(&ce->active)); rq = active_request(ce->timeline, rq); head = intel_ring_wrap(ce->ring, rq->head); GEM_BUG_ON(head == ce->ring->tail); /* * If this request hasn't started yet, e.g. it is waiting on a * semaphore, we need to avoid skipping the request or else we * break the signaling chain. However, if the context is corrupt * the request will not restart and we will be stuck with a wedged * device. It is quite often the case that if we issue a reset * while the GPU is loading the context image, that the context * image becomes corrupt. * * Otherwise, if we have not started yet, the request should replay * perfectly and we do not need to flag the result as being erroneous. */ if (!i915_request_started(rq)) goto out_replay; /* * If the request was innocent, we leave the request in the ELSP * and will try to replay it on restarting. The context image may * have been corrupted by the reset, in which case we may have * to service a new GPU hang, but more likely we can continue on * without impact. * * If the request was guilty, we presume the context is corrupt * and have to at least restore the RING register in the context * image back to the expected values to skip over the guilty request. */ __i915_request_reset(rq, stalled); if (!stalled) goto out_replay; /* * We want a simple context + ring to execute the breadcrumb update. * We cannot rely on the context being intact across the GPU hang, * so clear it and rebuild just what we need for the breadcrumb. * All pending requests for this context will be zapped, and any * future request will be after userspace has had the opportunity * to recreate its own state. */ GEM_BUG_ON(!intel_context_is_pinned(ce)); restore_default_state(ce, engine); out_replay: ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n", head, ce->ring->tail); __execlists_reset_reg_state(ce, engine); __execlists_update_reg_state(ce, engine, head); ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */ unwind: /* Push back any incomplete requests for replay after the reset. */ cancel_port_requests(execlists); __unwind_incomplete_requests(engine); } static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled) { unsigned long flags; ENGINE_TRACE(engine, "\n"); spin_lock_irqsave(&engine->active.lock, flags); __execlists_reset(engine, stalled); spin_unlock_irqrestore(&engine->active.lock, flags); } static void nop_submission_tasklet(unsigned long data) { /* The driver is wedged; don't process any more events. */ } static void execlists_reset_cancel(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request *rq, *rn; struct rb_node *rb; unsigned long flags; ENGINE_TRACE(engine, "\n"); /* * Before we call engine->cancel_requests(), we should have exclusive * access to the submission state. This is arranged for us by the * caller disabling the interrupt generation, the tasklet and other * threads that may then access the same state, giving us a free hand * to reset state. However, we still need to let lockdep be aware that * we know this state may be accessed in hardirq context, so we * disable the irq around this manipulation and we want to keep * the spinlock focused on its duties and not accidentally conflate * coverage to the submission's irq state. (Similarly, although we * shouldn't need to disable irq around the manipulation of the * submission's irq state, we also wish to remind ourselves that * it is irq state.) */ spin_lock_irqsave(&engine->active.lock, flags); __execlists_reset(engine, true); /* Mark all executing requests as skipped. */ list_for_each_entry(rq, &engine->active.requests, sched.link) mark_eio(rq); /* Flush the queued requests to the timeline list (for retiring). */ while ((rb = rb_first_cached(&execlists->queue))) { struct i915_priolist *p = to_priolist(rb); int i; priolist_for_each_request_consume(rq, rn, p, i) { mark_eio(rq); __i915_request_submit(rq); } rb_erase_cached(&p->node, &execlists->queue); i915_priolist_free(p); } /* On-hold requests will be flushed to timeline upon their release */ list_for_each_entry(rq, &engine->active.hold, sched.link) mark_eio(rq); /* Cancel all attached virtual engines */ while ((rb = rb_first_cached(&execlists->virtual))) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); spin_lock(&ve->base.active.lock); rq = fetch_and_zero(&ve->request); if (rq) { mark_eio(rq); rq->engine = engine; __i915_request_submit(rq); i915_request_put(rq); ve->base.execlists.queue_priority_hint = INT_MIN; } spin_unlock(&ve->base.active.lock); } /* Remaining _unready_ requests will be nop'ed when submitted */ execlists->queue_priority_hint = INT_MIN; execlists->queue = RB_ROOT_CACHED; GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet)); execlists->tasklet.func = nop_submission_tasklet; spin_unlock_irqrestore(&engine->active.lock, flags); } static void execlists_reset_finish(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; /* * After a GPU reset, we may have requests to replay. Do so now while * we still have the forcewake to be sure that the GPU is not allowed * to sleep before we restart and reload a context. */ GEM_BUG_ON(!reset_in_progress(execlists)); if (!RB_EMPTY_ROOT(&execlists->queue.rb_root)) execlists->tasklet.func(execlists->tasklet.data); if (__tasklet_enable(&execlists->tasklet)) /* And kick in case we missed a new request submission. */ tasklet_hi_schedule(&execlists->tasklet); ENGINE_TRACE(engine, "depth->%d\n", atomic_read(&execlists->tasklet.count)); } static int gen8_emit_bb_start_noarb(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); /* * WaDisableCtxRestoreArbitration:bdw,chv * * We don't need to perform MI_ARB_ENABLE as often as we do (in * particular all the gen that do not need the w/a at all!), if we * took care to make sure that on every switch into this context * (both ordinary and for preemption) that arbitrartion was enabled * we would be fine. However, for gen8 there is another w/a that * requires us to not preempt inside GPGPU execution, so we keep * arbitration disabled for gen8 batches. Arbitration will be * re-enabled before we close the request * (engine->emit_fini_breadcrumb). */ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* FIXME(BDW+): Address space and security selectors. */ *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); intel_ring_advance(rq, cs); return 0; } static int gen8_emit_bb_start(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { u32 *cs; cs = intel_ring_begin(rq, 6); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~(engine->irq_enable_mask | engine->irq_keep_mask)); ENGINE_POSTING_READ(engine, RING_IMR); } static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); } static int gen8_emit_flush(struct i915_request *request, u32 mode) { u32 cmd, *cs; cs = intel_ring_begin(request, 4); if (IS_ERR(cs)) return PTR_ERR(cs); cmd = MI_FLUSH_DW + 1; /* We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; if (mode & EMIT_INVALIDATE) { cmd |= MI_INVALIDATE_TLB; if (request->engine->class == VIDEO_DECODE_CLASS) cmd |= MI_INVALIDATE_BSD; } *cs++ = cmd; *cs++ = LRC_PPHWSP_SCRATCH_ADDR; *cs++ = 0; /* upper addr */ *cs++ = 0; /* value */ intel_ring_advance(request, cs); return 0; } static int gen8_emit_flush_render(struct i915_request *request, u32 mode) { bool vf_flush_wa = false, dc_flush_wa = false; u32 *cs, flags = 0; int len; flags |= PIPE_CONTROL_CS_STALL; if (mode & EMIT_FLUSH) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (mode & EMIT_INVALIDATE) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; /* * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL * pipe control. */ if (IS_GEN(request->i915, 9)) vf_flush_wa = true; /* WaForGAMHang:kbl */ if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0)) dc_flush_wa = true; } len = 6; if (vf_flush_wa) len += 6; if (dc_flush_wa) len += 12; cs = intel_ring_begin(request, len); if (IS_ERR(cs)) return PTR_ERR(cs); if (vf_flush_wa) cs = gen8_emit_pipe_control(cs, 0, 0); if (dc_flush_wa) cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 0); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); if (dc_flush_wa) cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); intel_ring_advance(request, cs); return 0; } static int gen11_emit_flush_render(struct i915_request *request, u32 mode) { if (mode & EMIT_FLUSH) { u32 *cs; u32 flags = 0; flags |= PIPE_CONTROL_CS_STALL; flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; cs = intel_ring_begin(request, 6); if (IS_ERR(cs)) return PTR_ERR(cs); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); intel_ring_advance(request, cs); } if (mode & EMIT_INVALIDATE) { u32 *cs; u32 flags = 0; flags |= PIPE_CONTROL_CS_STALL; flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; cs = intel_ring_begin(request, 6); if (IS_ERR(cs)) return PTR_ERR(cs); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); intel_ring_advance(request, cs); } return 0; } static u32 preparser_disable(bool state) { return MI_ARB_CHECK | 1 << 8 | state; } static int gen12_emit_flush_render(struct i915_request *request, u32 mode) { if (mode & EMIT_FLUSH) { u32 flags = 0; u32 *cs; flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; /* Wa_1409600907:tgl */ flags |= PIPE_CONTROL_DEPTH_STALL; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH; flags |= PIPE_CONTROL_STORE_DATA_INDEX; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_CS_STALL; cs = intel_ring_begin(request, 6); if (IS_ERR(cs)) return PTR_ERR(cs); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); intel_ring_advance(request, cs); } if (mode & EMIT_INVALIDATE) { u32 flags = 0; u32 *cs; flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STORE_DATA_INDEX; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_CS_STALL; cs = intel_ring_begin(request, 8); if (IS_ERR(cs)) return PTR_ERR(cs); /* * Prevent the pre-parser from skipping past the TLB * invalidate and loading a stale page for the batch * buffer / request payload. */ *cs++ = preparser_disable(true); cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); *cs++ = preparser_disable(false); intel_ring_advance(request, cs); } return 0; } /* * Reserve space for 2 NOOPs at the end of each request to be * used as a workaround for not being allowed to do lite * restore with HEAD==TAIL (WaIdleLiteRestore). */ static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs) { /* Ensure there's always at least one preemption point per-request. */ *cs++ = MI_ARB_CHECK; *cs++ = MI_NOOP; request->wa_tail = intel_ring_offset(request, cs); return cs; } static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs) { *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = intel_hws_preempt_address(request->engine); *cs++ = 0; return cs; } static __always_inline u32* gen8_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs) { *cs++ = MI_USER_INTERRUPT; *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; if (intel_engine_has_semaphores(request->engine)) cs = emit_preempt_busywait(request, cs); request->tail = intel_ring_offset(request, cs); assert_ring_tail_valid(request->ring, request->tail); return gen8_emit_wa_tail(request, cs); } static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) { cs = gen8_emit_ggtt_write(cs, request->fence.seqno, i915_request_active_timeline(request)->hwsp_offset, 0); return gen8_emit_fini_breadcrumb_footer(request, cs); } static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) { cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE, 0); /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ cs = gen8_emit_ggtt_write_rcs(cs, request->fence.seqno, i915_request_active_timeline(request)->hwsp_offset, PIPE_CONTROL_FLUSH_ENABLE | PIPE_CONTROL_CS_STALL); return gen8_emit_fini_breadcrumb_footer(request, cs); } static u32 * gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) { cs = gen8_emit_ggtt_write_rcs(cs, request->fence.seqno, i915_request_active_timeline(request)->hwsp_offset, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_TILE_CACHE_FLUSH | PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_FLUSH_ENABLE); return gen8_emit_fini_breadcrumb_footer(request, cs); } /* * Note that the CS instruction pre-parser will not stall on the breadcrumb * flush and will continue pre-fetching the instructions after it before the * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at * BB_START/END instructions, so, even though we might pre-fetch the pre-amble * of the next request before the memory has been flushed, we're guaranteed that * we won't access the batch itself too early. * However, on gen12+ the parser can pre-fetch across the BB_START/END commands, * so, if the current request is modifying an instruction in the next request on * the same intel_context, we might pre-fetch and then execute the pre-update * instruction. To avoid this, the users of self-modifying code should either * disable the parser around the code emitting the memory writes, via a new flag * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For * the in-kernel use-cases we've opted to use a separate context, see * reloc_gpu() as an example. * All the above applies only to the instructions themselves. Non-inline data * used by the instructions is not pre-fetched. */ static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs) { *cs++ = MI_SEMAPHORE_WAIT_TOKEN | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD; *cs++ = 0; *cs++ = intel_hws_preempt_address(request->engine); *cs++ = 0; *cs++ = 0; *cs++ = MI_NOOP; return cs; } static __always_inline u32* gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs) { *cs++ = MI_USER_INTERRUPT; *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; if (intel_engine_has_semaphores(request->engine)) cs = gen12_emit_preempt_busywait(request, cs); request->tail = intel_ring_offset(request, cs); assert_ring_tail_valid(request->ring, request->tail); return gen8_emit_wa_tail(request, cs); } static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) { cs = gen8_emit_ggtt_write(cs, request->fence.seqno, i915_request_active_timeline(request)->hwsp_offset, 0); return gen12_emit_fini_breadcrumb_footer(request, cs); } static u32 * gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) { cs = gen8_emit_ggtt_write_rcs(cs, request->fence.seqno, i915_request_active_timeline(request)->hwsp_offset, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_TILE_CACHE_FLUSH | PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | PIPE_CONTROL_DEPTH_CACHE_FLUSH | /* Wa_1409600907:tgl */ PIPE_CONTROL_DEPTH_STALL | PIPE_CONTROL_DC_FLUSH_ENABLE | PIPE_CONTROL_FLUSH_ENABLE | PIPE_CONTROL_HDC_PIPELINE_FLUSH); return gen12_emit_fini_breadcrumb_footer(request, cs); } static void execlists_park(struct intel_engine_cs *engine) { cancel_timer(&engine->execlists.timer); cancel_timer(&engine->execlists.preempt); } void intel_execlists_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = execlists_submit_request; engine->schedule = i915_schedule; engine->execlists.tasklet.func = execlists_submission_tasklet; engine->reset.prepare = execlists_reset_prepare; engine->reset.rewind = execlists_reset_rewind; engine->reset.cancel = execlists_reset_cancel; engine->reset.finish = execlists_reset_finish; engine->park = execlists_park; engine->unpark = NULL; engine->flags |= I915_ENGINE_SUPPORTS_STATS; if (!intel_vgpu_active(engine->i915)) { engine->flags |= I915_ENGINE_HAS_SEMAPHORES; if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) engine->flags |= I915_ENGINE_HAS_PREEMPTION; } if (INTEL_GEN(engine->i915) >= 12) engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; if (intel_engine_has_preemption(engine)) engine->emit_bb_start = gen8_emit_bb_start; else engine->emit_bb_start = gen8_emit_bb_start_noarb; } static void execlists_shutdown(struct intel_engine_cs *engine) { /* Synchronise with residual timers and any softirq they raise */ del_timer_sync(&engine->execlists.timer); del_timer_sync(&engine->execlists.preempt); tasklet_kill(&engine->execlists.tasklet); } static void execlists_release(struct intel_engine_cs *engine) { execlists_shutdown(engine); intel_engine_cleanup_common(engine); lrc_destroy_wa_ctx(engine); } static void logical_ring_default_vfuncs(struct intel_engine_cs *engine) { /* Default vfuncs which can be overriden by each engine. */ engine->resume = execlists_resume; engine->cops = &execlists_context_ops; engine->request_alloc = execlists_request_alloc; engine->emit_flush = gen8_emit_flush; engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb; if (INTEL_GEN(engine->i915) >= 12) engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb; engine->set_default_submission = intel_execlists_set_default_submission; if (INTEL_GEN(engine->i915) < 11) { engine->irq_enable = gen8_logical_ring_enable_irq; engine->irq_disable = gen8_logical_ring_disable_irq; } else { /* * TODO: On Gen11 interrupt masks need to be clear * to allow C6 entry. Keep interrupts enabled at * and take the hit of generating extra interrupts * until a more refined solution exists. */ } } static inline void logical_ring_default_irqs(struct intel_engine_cs *engine) { unsigned int shift = 0; if (INTEL_GEN(engine->i915) < 11) { const u8 irq_shifts[] = { [RCS0] = GEN8_RCS_IRQ_SHIFT, [BCS0] = GEN8_BCS_IRQ_SHIFT, [VCS0] = GEN8_VCS0_IRQ_SHIFT, [VCS1] = GEN8_VCS1_IRQ_SHIFT, [VECS0] = GEN8_VECS_IRQ_SHIFT, }; shift = irq_shifts[engine->id]; } engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; } static void rcs_submission_override(struct intel_engine_cs *engine) { switch (INTEL_GEN(engine->i915)) { case 12: engine->emit_flush = gen12_emit_flush_render; engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; break; case 11: engine->emit_flush = gen11_emit_flush_render; engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; break; default: engine->emit_flush = gen8_emit_flush_render; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; break; } } int intel_execlists_submission_setup(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct drm_i915_private *i915 = engine->i915; struct intel_uncore *uncore = engine->uncore; u32 base = engine->mmio_base; tasklet_init(&engine->execlists.tasklet, execlists_submission_tasklet, (unsigned long)engine); timer_setup(&engine->execlists.timer, execlists_timeslice, 0); timer_setup(&engine->execlists.preempt, execlists_preempt, 0); logical_ring_default_vfuncs(engine); logical_ring_default_irqs(engine); if (engine->class == RENDER_CLASS) rcs_submission_override(engine); if (intel_init_workaround_bb(engine)) /* * We continue even if we fail to initialize WA batch * because we only expect rare glitches but nothing * critical to prevent us from using GPU */ DRM_ERROR("WA batch buffer initialization failed\n"); if (HAS_LOGICAL_RING_ELSQ(i915)) { execlists->submit_reg = uncore->regs + i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); execlists->ctrl_reg = uncore->regs + i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); } else { execlists->submit_reg = uncore->regs + i915_mmio_reg_offset(RING_ELSP(base)); } execlists->csb_status = &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; execlists->csb_write = &engine->status_page.addr[intel_hws_csb_write_index(i915)]; if (INTEL_GEN(i915) < 11) execlists->csb_size = GEN8_CSB_ENTRIES; else execlists->csb_size = GEN11_CSB_ENTRIES; reset_csb_pointers(engine); /* Finally, take ownership and responsibility for cleanup! */ engine->release = execlists_release; return 0; } static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine) { u32 indirect_ctx_offset; switch (INTEL_GEN(engine->i915)) { default: MISSING_CASE(INTEL_GEN(engine->i915)); /* fall through */ case 12: indirect_ctx_offset = GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; case 11: indirect_ctx_offset = GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; case 10: indirect_ctx_offset = GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; case 9: indirect_ctx_offset = GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; case 8: indirect_ctx_offset = GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; break; } return indirect_ctx_offset; } static void init_common_reg_state(u32 * const regs, const struct intel_engine_cs *engine, const struct intel_ring *ring, bool inhibit) { u32 ctl; ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH); ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); if (inhibit) ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT; if (INTEL_GEN(engine->i915) < 11) ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | CTX_CTRL_RS_CTX_ENABLE); regs[CTX_CONTEXT_CONTROL] = ctl; regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; } static void init_wa_bb_reg_state(u32 * const regs, const struct intel_engine_cs *engine, u32 pos_bb_per_ctx) { const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx; if (wa_ctx->per_ctx.size) { const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); regs[pos_bb_per_ctx] = (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; } if (wa_ctx->indirect_ctx.size) { const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); regs[pos_bb_per_ctx + 2] = (ggtt_offset + wa_ctx->indirect_ctx.offset) | (wa_ctx->indirect_ctx.size / CACHELINE_BYTES); regs[pos_bb_per_ctx + 4] = intel_lr_indirect_ctx_offset(engine) << 6; } } static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt) { if (i915_vm_is_4lvl(&ppgtt->vm)) { /* 64b PPGTT (48bit canonical) * PDP0_DESCRIPTOR contains the base address to PML4 and * other PDP Descriptors are ignored. */ ASSIGN_CTX_PML4(ppgtt, regs); } else { ASSIGN_CTX_PDP(ppgtt, regs, 3); ASSIGN_CTX_PDP(ppgtt, regs, 2); ASSIGN_CTX_PDP(ppgtt, regs, 1); ASSIGN_CTX_PDP(ppgtt, regs, 0); } } static struct i915_ppgtt *vm_alias(struct i915_address_space *vm) { if (i915_is_ggtt(vm)) return i915_vm_to_ggtt(vm)->alias; else return i915_vm_to_ppgtt(vm); } static void execlists_init_reg_state(u32 *regs, const struct intel_context *ce, const struct intel_engine_cs *engine, const struct intel_ring *ring, bool inhibit) { /* * A context is actually a big batch buffer with several * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The * values we are setting here are only for the first context restore: * on a subsequent save, the GPU will recreate this batchbuffer with new * values (including all the missing MI_LOAD_REGISTER_IMM commands that * we are not initializing here). * * Must keep consistent with virtual_update_register_offsets(). */ set_offsets(regs, reg_offsets(engine), engine, inhibit); init_common_reg_state(regs, engine, ring, inhibit); init_ppgtt_reg_state(regs, vm_alias(ce->vm)); init_wa_bb_reg_state(regs, engine, INTEL_GEN(engine->i915) >= 12 ? GEN12_CTX_BB_PER_CTX_PTR : CTX_BB_PER_CTX_PTR); __reset_stop_ring(regs, engine); } static int populate_lr_context(struct intel_context *ce, struct drm_i915_gem_object *ctx_obj, struct intel_engine_cs *engine, struct intel_ring *ring) { bool inhibit = true; void *vaddr; int ret; vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); return ret; } set_redzone(vaddr, engine); if (engine->default_state) { void *defaults; defaults = i915_gem_object_pin_map(engine->default_state, I915_MAP_WB); if (IS_ERR(defaults)) { ret = PTR_ERR(defaults); goto err_unpin_ctx; } memcpy(vaddr, defaults, engine->context_size); i915_gem_object_unpin_map(engine->default_state); __set_bit(CONTEXT_VALID_BIT, &ce->flags); inhibit = false; } /* The second page of the context object contains some fields which must * be set up prior to the first execution. */ execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE, ce, engine, ring, inhibit); ret = 0; err_unpin_ctx: __i915_gem_object_flush_map(ctx_obj, 0, engine->context_size); i915_gem_object_unpin_map(ctx_obj); return ret; } static int __execlists_context_alloc(struct intel_context *ce, struct intel_engine_cs *engine) { struct drm_i915_gem_object *ctx_obj; struct intel_ring *ring; struct i915_vma *vma; u32 context_size; int ret; GEM_BUG_ON(ce->state); context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) context_size += I915_GTT_PAGE_SIZE; /* for redzone */ ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size); if (IS_ERR(ctx_obj)) return PTR_ERR(ctx_obj); vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto error_deref_obj; } if (!ce->timeline) { struct intel_timeline *tl; tl = intel_timeline_create(engine->gt, NULL); if (IS_ERR(tl)) { ret = PTR_ERR(tl); goto error_deref_obj; } ce->timeline = tl; } ring = intel_engine_create_ring(engine, (unsigned long)ce->ring); if (IS_ERR(ring)) { ret = PTR_ERR(ring); goto error_deref_obj; } ret = populate_lr_context(ce, ctx_obj, engine, ring); if (ret) { DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); goto error_ring_free; } ce->ring = ring; ce->state = vma; return 0; error_ring_free: intel_ring_put(ring); error_deref_obj: i915_gem_object_put(ctx_obj); return ret; } static struct list_head *virtual_queue(struct virtual_engine *ve) { return &ve->base.execlists.default_priolist.requests[0]; } static void virtual_context_destroy(struct kref *kref) { struct virtual_engine *ve = container_of(kref, typeof(*ve), context.ref); unsigned int n; GEM_BUG_ON(!list_empty(virtual_queue(ve))); GEM_BUG_ON(ve->request); GEM_BUG_ON(ve->context.inflight); for (n = 0; n < ve->num_siblings; n++) { struct intel_engine_cs *sibling = ve->siblings[n]; struct rb_node *node = &ve->nodes[sibling->id].rb; unsigned long flags; if (RB_EMPTY_NODE(node)) continue; spin_lock_irqsave(&sibling->active.lock, flags); /* Detachment is lazily performed in the execlists tasklet */ if (!RB_EMPTY_NODE(node)) rb_erase_cached(node, &sibling->execlists.virtual); spin_unlock_irqrestore(&sibling->active.lock, flags); } GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet)); if (ve->context.state) __execlists_context_fini(&ve->context); intel_context_fini(&ve->context); kfree(ve->bonds); kfree(ve); } static void virtual_engine_initial_hint(struct virtual_engine *ve) { int swp; /* * Pick a random sibling on starting to help spread the load around. * * New contexts are typically created with exactly the same order * of siblings, and often started in batches. Due to the way we iterate * the array of sibling when submitting requests, sibling[0] is * prioritised for dequeuing. If we make sure that sibling[0] is fairly * randomised across the system, we also help spread the load by the * first engine we inspect being different each time. * * NB This does not force us to execute on this engine, it will just * typically be the first we inspect for submission. */ swp = prandom_u32_max(ve->num_siblings); if (!swp) return; swap(ve->siblings[swp], ve->siblings[0]); if (!intel_engine_has_relative_mmio(ve->siblings[0])) virtual_update_register_offsets(ve->context.lrc_reg_state, ve->siblings[0]); } static int virtual_context_alloc(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); return __execlists_context_alloc(ce, ve->siblings[0]); } static int virtual_context_pin(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); int err; /* Note: we must use a real engine class for setting up reg state */ err = __execlists_context_pin(ce, ve->siblings[0]); if (err) return err; virtual_engine_initial_hint(ve); return 0; } static void virtual_context_enter(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); unsigned int n; for (n = 0; n < ve->num_siblings; n++) intel_engine_pm_get(ve->siblings[n]); intel_timeline_enter(ce->timeline); } static void virtual_context_exit(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); unsigned int n; intel_timeline_exit(ce->timeline); for (n = 0; n < ve->num_siblings; n++) intel_engine_pm_put(ve->siblings[n]); } static const struct intel_context_ops virtual_context_ops = { .alloc = virtual_context_alloc, .pin = virtual_context_pin, .unpin = execlists_context_unpin, .enter = virtual_context_enter, .exit = virtual_context_exit, .destroy = virtual_context_destroy, }; static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) { struct i915_request *rq; intel_engine_mask_t mask; rq = READ_ONCE(ve->request); if (!rq) return 0; /* The rq is ready for submission; rq->execution_mask is now stable. */ mask = rq->execution_mask; if (unlikely(!mask)) { /* Invalid selection, submit to a random engine in error */ i915_request_skip(rq, -ENODEV); mask = ve->siblings[0]->mask; } ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n", rq->fence.context, rq->fence.seqno, mask, ve->base.execlists.queue_priority_hint); return mask; } static void virtual_submission_tasklet(unsigned long data) { struct virtual_engine * const ve = (struct virtual_engine *)data; const int prio = ve->base.execlists.queue_priority_hint; intel_engine_mask_t mask; unsigned int n; rcu_read_lock(); mask = virtual_submission_mask(ve); rcu_read_unlock(); if (unlikely(!mask)) return; local_irq_disable(); for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) { struct intel_engine_cs *sibling = ve->siblings[n]; struct ve_node * const node = &ve->nodes[sibling->id]; struct rb_node **parent, *rb; bool first; if (unlikely(!(mask & sibling->mask))) { if (!RB_EMPTY_NODE(&node->rb)) { spin_lock(&sibling->active.lock); rb_erase_cached(&node->rb, &sibling->execlists.virtual); RB_CLEAR_NODE(&node->rb); spin_unlock(&sibling->active.lock); } continue; } spin_lock(&sibling->active.lock); if (!RB_EMPTY_NODE(&node->rb)) { /* * Cheat and avoid rebalancing the tree if we can * reuse this node in situ. */ first = rb_first_cached(&sibling->execlists.virtual) == &node->rb; if (prio == node->prio || (prio > node->prio && first)) goto submit_engine; rb_erase_cached(&node->rb, &sibling->execlists.virtual); } rb = NULL; first = true; parent = &sibling->execlists.virtual.rb_root.rb_node; while (*parent) { struct ve_node *other; rb = *parent; other = rb_entry(rb, typeof(*other), rb); if (prio > other->prio) { parent = &rb->rb_left; } else { parent = &rb->rb_right; first = false; } } rb_link_node(&node->rb, rb, parent); rb_insert_color_cached(&node->rb, &sibling->execlists.virtual, first); submit_engine: GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); node->prio = prio; if (first && prio > sibling->execlists.queue_priority_hint) { sibling->execlists.queue_priority_hint = prio; tasklet_hi_schedule(&sibling->execlists.tasklet); } spin_unlock(&sibling->active.lock); } local_irq_enable(); } static void virtual_submit_request(struct i915_request *rq) { struct virtual_engine *ve = to_virtual_engine(rq->engine); struct i915_request *old; unsigned long flags; ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n", rq->fence.context, rq->fence.seqno); GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); spin_lock_irqsave(&ve->base.active.lock, flags); old = ve->request; if (old) { /* background completion event from preempt-to-busy */ GEM_BUG_ON(!i915_request_completed(old)); __i915_request_submit(old); i915_request_put(old); } if (i915_request_completed(rq)) { __i915_request_submit(rq); ve->base.execlists.queue_priority_hint = INT_MIN; ve->request = NULL; } else { ve->base.execlists.queue_priority_hint = rq_prio(rq); ve->request = i915_request_get(rq); GEM_BUG_ON(!list_empty(virtual_queue(ve))); list_move_tail(&rq->sched.link, virtual_queue(ve)); tasklet_schedule(&ve->base.execlists.tasklet); } spin_unlock_irqrestore(&ve->base.active.lock, flags); } static struct ve_bond * virtual_find_bond(struct virtual_engine *ve, const struct intel_engine_cs *master) { int i; for (i = 0; i < ve->num_bonds; i++) { if (ve->bonds[i].master == master) return &ve->bonds[i]; } return NULL; } static void virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal) { struct virtual_engine *ve = to_virtual_engine(rq->engine); intel_engine_mask_t allowed, exec; struct ve_bond *bond; allowed = ~to_request(signal)->engine->mask; bond = virtual_find_bond(ve, to_request(signal)->engine); if (bond) allowed &= bond->sibling_mask; /* Restrict the bonded request to run on only the available engines */ exec = READ_ONCE(rq->execution_mask); while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed)) ; /* Prevent the master from being re-run on the bonded engines */ to_request(signal)->execution_mask &= ~allowed; } struct intel_context * intel_execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count) { struct virtual_engine *ve; unsigned int n; int err; if (count == 0) return ERR_PTR(-EINVAL); if (count == 1) return intel_context_create(siblings[0]); ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); if (!ve) return ERR_PTR(-ENOMEM); ve->base.i915 = siblings[0]->i915; ve->base.gt = siblings[0]->gt; ve->base.uncore = siblings[0]->uncore; ve->base.id = -1; ve->base.class = OTHER_CLASS; ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; /* * The decision on whether to submit a request using semaphores * depends on the saturated state of the engine. We only compute * this during HW submission of the request, and we need for this * state to be globally applied to all requests being submitted * to this engine. Virtual engines encompass more than one physical * engine and so we cannot accurately tell in advance if one of those * engines is already saturated and so cannot afford to use a semaphore * and be pessimized in priority for doing so -- if we are the only * context using semaphores after all other clients have stopped, we * will be starved on the saturated system. Such a global switch for * semaphores is less than ideal, but alas is the current compromise. */ ve->base.saturated = ALL_ENGINES; snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); intel_engine_init_active(&ve->base, ENGINE_VIRTUAL); intel_engine_init_breadcrumbs(&ve->base); intel_engine_init_execlists(&ve->base); ve->base.cops = &virtual_context_ops; ve->base.request_alloc = execlists_request_alloc; ve->base.schedule = i915_schedule; ve->base.submit_request = virtual_submit_request; ve->base.bond_execute = virtual_bond_execute; INIT_LIST_HEAD(virtual_queue(ve)); ve->base.execlists.queue_priority_hint = INT_MIN; tasklet_init(&ve->base.execlists.tasklet, virtual_submission_tasklet, (unsigned long)ve); intel_context_init(&ve->context, &ve->base); for (n = 0; n < count; n++) { struct intel_engine_cs *sibling = siblings[n]; GEM_BUG_ON(!is_power_of_2(sibling->mask)); if (sibling->mask & ve->base.mask) { DRM_DEBUG("duplicate %s entry in load balancer\n", sibling->name); err = -EINVAL; goto err_put; } /* * The virtual engine implementation is tightly coupled to * the execlists backend -- we push out request directly * into a tree inside each physical engine. We could support * layering if we handle cloning of the requests and * submitting a copy into each backend. */ if (sibling->execlists.tasklet.func != execlists_submission_tasklet) { err = -ENODEV; goto err_put; } GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); ve->siblings[ve->num_siblings++] = sibling; ve->base.mask |= sibling->mask; /* * All physical engines must be compatible for their emission * functions (as we build the instructions during request * construction and do not alter them before submission * on the physical engine). We use the engine class as a guide * here, although that could be refined. */ if (ve->base.class != OTHER_CLASS) { if (ve->base.class != sibling->class) { DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", sibling->class, ve->base.class); err = -EINVAL; goto err_put; } continue; } ve->base.class = sibling->class; ve->base.uabi_class = sibling->uabi_class; snprintf(ve->base.name, sizeof(ve->base.name), "v%dx%d", ve->base.class, count); ve->base.context_size = sibling->context_size; ve->base.emit_bb_start = sibling->emit_bb_start; ve->base.emit_flush = sibling->emit_flush; ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; ve->base.emit_fini_breadcrumb_dw = sibling->emit_fini_breadcrumb_dw; ve->base.flags = sibling->flags; } ve->base.flags |= I915_ENGINE_IS_VIRTUAL; return &ve->context; err_put: intel_context_put(&ve->context); return ERR_PTR(err); } struct intel_context * intel_execlists_clone_virtual(struct intel_engine_cs *src) { struct virtual_engine *se = to_virtual_engine(src); struct intel_context *dst; dst = intel_execlists_create_virtual(se->siblings, se->num_siblings); if (IS_ERR(dst)) return dst; if (se->num_bonds) { struct virtual_engine *de = to_virtual_engine(dst->engine); de->bonds = kmemdup(se->bonds, sizeof(*se->bonds) * se->num_bonds, GFP_KERNEL); if (!de->bonds) { intel_context_put(dst); return ERR_PTR(-ENOMEM); } de->num_bonds = se->num_bonds; } return dst; } int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine, const struct intel_engine_cs *master, const struct intel_engine_cs *sibling) { struct virtual_engine *ve = to_virtual_engine(engine); struct ve_bond *bond; int n; /* Sanity check the sibling is part of the virtual engine */ for (n = 0; n < ve->num_siblings; n++) if (sibling == ve->siblings[n]) break; if (n == ve->num_siblings) return -EINVAL; bond = virtual_find_bond(ve, master); if (bond) { bond->sibling_mask |= sibling->mask; return 0; } bond = krealloc(ve->bonds, sizeof(*bond) * (ve->num_bonds + 1), GFP_KERNEL); if (!bond) return -ENOMEM; bond[ve->num_bonds].master = master; bond[ve->num_bonds].sibling_mask = sibling->mask; ve->bonds = bond; ve->num_bonds++; return 0; } struct intel_engine_cs * intel_virtual_engine_get_sibling(struct intel_engine_cs *engine, unsigned int sibling) { struct virtual_engine *ve = to_virtual_engine(engine); if (sibling >= ve->num_siblings) return NULL; return ve->siblings[sibling]; } void intel_execlists_show_requests(struct intel_engine_cs *engine, struct drm_printer *m, void (*show_request)(struct drm_printer *m, struct i915_request *rq, const char *prefix), unsigned int max) { const struct intel_engine_execlists *execlists = &engine->execlists; struct i915_request *rq, *last; unsigned long flags; unsigned int count; struct rb_node *rb; spin_lock_irqsave(&engine->active.lock, flags); last = NULL; count = 0; list_for_each_entry(rq, &engine->active.requests, sched.link) { if (count++ < max - 1) show_request(m, rq, "\t\tE "); else last = rq; } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d executing requests...\n", count - max); } show_request(m, last, "\t\tE "); } last = NULL; count = 0; if (execlists->queue_priority_hint != INT_MIN) drm_printf(m, "\t\tQueue priority hint: %d\n", execlists->queue_priority_hint); for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { struct i915_priolist *p = rb_entry(rb, typeof(*p), node); int i; priolist_for_each_request(rq, p, i) { if (count++ < max - 1) show_request(m, rq, "\t\tQ "); else last = rq; } } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d queued requests...\n", count - max); } show_request(m, last, "\t\tQ "); } last = NULL; count = 0; for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); struct i915_request *rq = READ_ONCE(ve->request); if (rq) { if (count++ < max - 1) show_request(m, rq, "\t\tV "); else last = rq; } } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d virtual requests...\n", count - max); } show_request(m, last, "\t\tV "); } spin_unlock_irqrestore(&engine->active.lock, flags); } void intel_lr_context_reset(struct intel_engine_cs *engine, struct intel_context *ce, u32 head, bool scrub) { GEM_BUG_ON(!intel_context_is_pinned(ce)); /* * We want a simple context + ring to execute the breadcrumb update. * We cannot rely on the context being intact across the GPU hang, * so clear it and rebuild just what we need for the breadcrumb. * All pending requests for this context will be zapped, and any * future request will be after userspace has had the opportunity * to recreate its own state. */ if (scrub) restore_default_state(ce, engine); /* Rerun the request; its payload has been neutered (if guilty). */ __execlists_update_reg_state(ce, engine, head); } bool intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine) { return engine->set_default_submission == intel_execlists_set_default_submission; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_lrc.c" #endif |