Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Core of the accelerated CRC algorithm. * In your file, define the constants and CRC_FUNCTION_NAME * Then include this file. * * Calculate the checksum of data that is 16 byte aligned and a multiple of * 16 bytes. * * The first step is to reduce it to 1024 bits. We do this in 8 parallel * chunks in order to mask the latency of the vpmsum instructions. If we * have more than 32 kB of data to checksum we repeat this step multiple * times, passing in the previous 1024 bits. * * The next step is to reduce the 1024 bits to 64 bits. This step adds * 32 bits of 0s to the end - this matches what a CRC does. We just * calculate constants that land the data in this 32 bits. * * We then use fixed point Barrett reduction to compute a mod n over GF(2) * for n = CRC using POWER8 instructions. We use x = 32. * * http://en.wikipedia.org/wiki/Barrett_reduction * * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM */ #include <asm/ppc_asm.h> #include <asm/ppc-opcode.h> #define MAX_SIZE 32768 .text #if defined(__BIG_ENDIAN__) && defined(REFLECT) #define BYTESWAP_DATA #elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT) #define BYTESWAP_DATA #else #undef BYTESWAP_DATA #endif #define off16 r25 #define off32 r26 #define off48 r27 #define off64 r28 #define off80 r29 #define off96 r30 #define off112 r31 #define const1 v24 #define const2 v25 #define byteswap v26 #define mask_32bit v27 #define mask_64bit v28 #define zeroes v29 #ifdef BYTESWAP_DATA #define VPERM(A, B, C, D) vperm A, B, C, D #else #define VPERM(A, B, C, D) #endif /* unsigned int CRC_FUNCTION_NAME(unsigned int crc, void *p, unsigned long len) */ FUNC_START(CRC_FUNCTION_NAME) std r31,-8(r1) std r30,-16(r1) std r29,-24(r1) std r28,-32(r1) std r27,-40(r1) std r26,-48(r1) std r25,-56(r1) li off16,16 li off32,32 li off48,48 li off64,64 li off80,80 li off96,96 li off112,112 li r0,0 /* Enough room for saving 10 non volatile VMX registers */ subi r6,r1,56+10*16 subi r7,r1,56+2*16 stvx v20,0,r6 stvx v21,off16,r6 stvx v22,off32,r6 stvx v23,off48,r6 stvx v24,off64,r6 stvx v25,off80,r6 stvx v26,off96,r6 stvx v27,off112,r6 stvx v28,0,r7 stvx v29,off16,r7 mr r10,r3 vxor zeroes,zeroes,zeroes vspltisw v0,-1 vsldoi mask_32bit,zeroes,v0,4 vsldoi mask_64bit,zeroes,v0,8 /* Get the initial value into v8 */ vxor v8,v8,v8 MTVRD(v8, R3) #ifdef REFLECT vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */ #else vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */ #endif #ifdef BYTESWAP_DATA addis r3,r2,.byteswap_constant@toc@ha addi r3,r3,.byteswap_constant@toc@l lvx byteswap,0,r3 addi r3,r3,16 #endif cmpdi r5,256 blt .Lshort rldicr r6,r5,0,56 /* Checksum in blocks of MAX_SIZE */ 1: lis r7,MAX_SIZE@h ori r7,r7,MAX_SIZE@l mr r9,r7 cmpd r6,r7 bgt 2f mr r7,r6 2: subf r6,r7,r6 /* our main loop does 128 bytes at a time */ srdi r7,r7,7 /* * Work out the offset into the constants table to start at. Each * constant is 16 bytes, and it is used against 128 bytes of input * data - 128 / 16 = 8 */ sldi r8,r7,4 srdi r9,r9,3 subf r8,r8,r9 /* We reduce our final 128 bytes in a separate step */ addi r7,r7,-1 mtctr r7 addis r3,r2,.constants@toc@ha addi r3,r3,.constants@toc@l /* Find the start of our constants */ add r3,r3,r8 /* zero v0-v7 which will contain our checksums */ vxor v0,v0,v0 vxor v1,v1,v1 vxor v2,v2,v2 vxor v3,v3,v3 vxor v4,v4,v4 vxor v5,v5,v5 vxor v6,v6,v6 vxor v7,v7,v7 lvx const1,0,r3 /* * If we are looping back to consume more data we use the values * already in v16-v23. */ cmpdi r0,1 beq 2f /* First warm up pass */ lvx v16,0,r4 lvx v17,off16,r4 VPERM(v16,v16,v16,byteswap) VPERM(v17,v17,v17,byteswap) lvx v18,off32,r4 lvx v19,off48,r4 VPERM(v18,v18,v18,byteswap) VPERM(v19,v19,v19,byteswap) lvx v20,off64,r4 lvx v21,off80,r4 VPERM(v20,v20,v20,byteswap) VPERM(v21,v21,v21,byteswap) lvx v22,off96,r4 lvx v23,off112,r4 VPERM(v22,v22,v22,byteswap) VPERM(v23,v23,v23,byteswap) addi r4,r4,8*16 /* xor in initial value */ vxor v16,v16,v8 2: bdz .Lfirst_warm_up_done addi r3,r3,16 lvx const2,0,r3 /* Second warm up pass */ VPMSUMD(v8,v16,const1) lvx v16,0,r4 VPERM(v16,v16,v16,byteswap) ori r2,r2,0 VPMSUMD(v9,v17,const1) lvx v17,off16,r4 VPERM(v17,v17,v17,byteswap) ori r2,r2,0 VPMSUMD(v10,v18,const1) lvx v18,off32,r4 VPERM(v18,v18,v18,byteswap) ori r2,r2,0 VPMSUMD(v11,v19,const1) lvx v19,off48,r4 VPERM(v19,v19,v19,byteswap) ori r2,r2,0 VPMSUMD(v12,v20,const1) lvx v20,off64,r4 VPERM(v20,v20,v20,byteswap) ori r2,r2,0 VPMSUMD(v13,v21,const1) lvx v21,off80,r4 VPERM(v21,v21,v21,byteswap) ori r2,r2,0 VPMSUMD(v14,v22,const1) lvx v22,off96,r4 VPERM(v22,v22,v22,byteswap) ori r2,r2,0 VPMSUMD(v15,v23,const1) lvx v23,off112,r4 VPERM(v23,v23,v23,byteswap) addi r4,r4,8*16 bdz .Lfirst_cool_down /* * main loop. We modulo schedule it such that it takes three iterations * to complete - first iteration load, second iteration vpmsum, third * iteration xor. */ .balign 16 4: lvx const1,0,r3 addi r3,r3,16 ori r2,r2,0 vxor v0,v0,v8 VPMSUMD(v8,v16,const2) lvx v16,0,r4 VPERM(v16,v16,v16,byteswap) ori r2,r2,0 vxor v1,v1,v9 VPMSUMD(v9,v17,const2) lvx v17,off16,r4 VPERM(v17,v17,v17,byteswap) ori r2,r2,0 vxor v2,v2,v10 VPMSUMD(v10,v18,const2) lvx v18,off32,r4 VPERM(v18,v18,v18,byteswap) ori r2,r2,0 vxor v3,v3,v11 VPMSUMD(v11,v19,const2) lvx v19,off48,r4 VPERM(v19,v19,v19,byteswap) lvx const2,0,r3 ori r2,r2,0 vxor v4,v4,v12 VPMSUMD(v12,v20,const1) lvx v20,off64,r4 VPERM(v20,v20,v20,byteswap) ori r2,r2,0 vxor v5,v5,v13 VPMSUMD(v13,v21,const1) lvx v21,off80,r4 VPERM(v21,v21,v21,byteswap) ori r2,r2,0 vxor v6,v6,v14 VPMSUMD(v14,v22,const1) lvx v22,off96,r4 VPERM(v22,v22,v22,byteswap) ori r2,r2,0 vxor v7,v7,v15 VPMSUMD(v15,v23,const1) lvx v23,off112,r4 VPERM(v23,v23,v23,byteswap) addi r4,r4,8*16 bdnz 4b .Lfirst_cool_down: /* First cool down pass */ lvx const1,0,r3 addi r3,r3,16 vxor v0,v0,v8 VPMSUMD(v8,v16,const1) ori r2,r2,0 vxor v1,v1,v9 VPMSUMD(v9,v17,const1) ori r2,r2,0 vxor v2,v2,v10 VPMSUMD(v10,v18,const1) ori r2,r2,0 vxor v3,v3,v11 VPMSUMD(v11,v19,const1) ori r2,r2,0 vxor v4,v4,v12 VPMSUMD(v12,v20,const1) ori r2,r2,0 vxor v5,v5,v13 VPMSUMD(v13,v21,const1) ori r2,r2,0 vxor v6,v6,v14 VPMSUMD(v14,v22,const1) ori r2,r2,0 vxor v7,v7,v15 VPMSUMD(v15,v23,const1) ori r2,r2,0 .Lsecond_cool_down: /* Second cool down pass */ vxor v0,v0,v8 vxor v1,v1,v9 vxor v2,v2,v10 vxor v3,v3,v11 vxor v4,v4,v12 vxor v5,v5,v13 vxor v6,v6,v14 vxor v7,v7,v15 #ifdef REFLECT /* * vpmsumd produces a 96 bit result in the least significant bits * of the register. Since we are bit reflected we have to shift it * left 32 bits so it occupies the least significant bits in the * bit reflected domain. */ vsldoi v0,v0,zeroes,4 vsldoi v1,v1,zeroes,4 vsldoi v2,v2,zeroes,4 vsldoi v3,v3,zeroes,4 vsldoi v4,v4,zeroes,4 vsldoi v5,v5,zeroes,4 vsldoi v6,v6,zeroes,4 vsldoi v7,v7,zeroes,4 #endif /* xor with last 1024 bits */ lvx v8,0,r4 lvx v9,off16,r4 VPERM(v8,v8,v8,byteswap) VPERM(v9,v9,v9,byteswap) lvx v10,off32,r4 lvx v11,off48,r4 VPERM(v10,v10,v10,byteswap) VPERM(v11,v11,v11,byteswap) lvx v12,off64,r4 lvx v13,off80,r4 VPERM(v12,v12,v12,byteswap) VPERM(v13,v13,v13,byteswap) lvx v14,off96,r4 lvx v15,off112,r4 VPERM(v14,v14,v14,byteswap) VPERM(v15,v15,v15,byteswap) addi r4,r4,8*16 vxor v16,v0,v8 vxor v17,v1,v9 vxor v18,v2,v10 vxor v19,v3,v11 vxor v20,v4,v12 vxor v21,v5,v13 vxor v22,v6,v14 vxor v23,v7,v15 li r0,1 cmpdi r6,0 addi r6,r6,128 bne 1b /* Work out how many bytes we have left */ andi. r5,r5,127 /* Calculate where in the constant table we need to start */ subfic r6,r5,128 add r3,r3,r6 /* How many 16 byte chunks are in the tail */ srdi r7,r5,4 mtctr r7 /* * Reduce the previously calculated 1024 bits to 64 bits, shifting * 32 bits to include the trailing 32 bits of zeros */ lvx v0,0,r3 lvx v1,off16,r3 lvx v2,off32,r3 lvx v3,off48,r3 lvx v4,off64,r3 lvx v5,off80,r3 lvx v6,off96,r3 lvx v7,off112,r3 addi r3,r3,8*16 VPMSUMW(v0,v16,v0) VPMSUMW(v1,v17,v1) VPMSUMW(v2,v18,v2) VPMSUMW(v3,v19,v3) VPMSUMW(v4,v20,v4) VPMSUMW(v5,v21,v5) VPMSUMW(v6,v22,v6) VPMSUMW(v7,v23,v7) /* Now reduce the tail (0 - 112 bytes) */ cmpdi r7,0 beq 1f lvx v16,0,r4 lvx v17,0,r3 VPERM(v16,v16,v16,byteswap) VPMSUMW(v16,v16,v17) vxor v0,v0,v16 bdz 1f lvx v16,off16,r4 lvx v17,off16,r3 VPERM(v16,v16,v16,byteswap) VPMSUMW(v16,v16,v17) vxor v0,v0,v16 bdz 1f lvx v16,off32,r4 lvx v17,off32,r3 VPERM(v16,v16,v16,byteswap) VPMSUMW(v16,v16,v17) vxor v0,v0,v16 bdz 1f lvx v16,off48,r4 lvx v17,off48,r3 VPERM(v16,v16,v16,byteswap) VPMSUMW(v16,v16,v17) vxor v0,v0,v16 bdz 1f lvx v16,off64,r4 lvx v17,off64,r3 VPERM(v16,v16,v16,byteswap) VPMSUMW(v16,v16,v17) vxor v0,v0,v16 bdz 1f lvx v16,off80,r4 lvx v17,off80,r3 VPERM(v16,v16,v16,byteswap) VPMSUMW(v16,v16,v17) vxor v0,v0,v16 bdz 1f lvx v16,off96,r4 lvx v17,off96,r3 VPERM(v16,v16,v16,byteswap) VPMSUMW(v16,v16,v17) vxor v0,v0,v16 /* Now xor all the parallel chunks together */ 1: vxor v0,v0,v1 vxor v2,v2,v3 vxor v4,v4,v5 vxor v6,v6,v7 vxor v0,v0,v2 vxor v4,v4,v6 vxor v0,v0,v4 .Lbarrett_reduction: /* Barrett constants */ addis r3,r2,.barrett_constants@toc@ha addi r3,r3,.barrett_constants@toc@l lvx const1,0,r3 lvx const2,off16,r3 vsldoi v1,v0,v0,8 vxor v0,v0,v1 /* xor two 64 bit results together */ #ifdef REFLECT /* shift left one bit */ vspltisb v1,1 vsl v0,v0,v1 #endif vand v0,v0,mask_64bit #ifndef REFLECT /* * Now for the Barrett reduction algorithm. The idea is to calculate q, * the multiple of our polynomial that we need to subtract. By * doing the computation 2x bits higher (ie 64 bits) and shifting the * result back down 2x bits, we round down to the nearest multiple. */ VPMSUMD(v1,v0,const1) /* ma */ vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */ VPMSUMD(v1,v1,const2) /* qn */ vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ /* * Get the result into r3. We need to shift it left 8 bytes: * V0 [ 0 1 2 X ] * V0 [ 0 X 2 3 ] */ vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */ #else /* * The reflected version of Barrett reduction. Instead of bit * reflecting our data (which is expensive to do), we bit reflect our * constants and our algorithm, which means the intermediate data in * our vector registers goes from 0-63 instead of 63-0. We can reflect * the algorithm because we don't carry in mod 2 arithmetic. */ vand v1,v0,mask_32bit /* bottom 32 bits of a */ VPMSUMD(v1,v1,const1) /* ma */ vand v1,v1,mask_32bit /* bottom 32bits of ma */ VPMSUMD(v1,v1,const2) /* qn */ vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ /* * Since we are bit reflected, the result (ie the low 32 bits) is in * the high 32 bits. We just need to shift it left 4 bytes * V0 [ 0 1 X 3 ] * V0 [ 0 X 2 3 ] */ vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */ #endif /* Get it into r3 */ MFVRD(R3, v0) .Lout: subi r6,r1,56+10*16 subi r7,r1,56+2*16 lvx v20,0,r6 lvx v21,off16,r6 lvx v22,off32,r6 lvx v23,off48,r6 lvx v24,off64,r6 lvx v25,off80,r6 lvx v26,off96,r6 lvx v27,off112,r6 lvx v28,0,r7 lvx v29,off16,r7 ld r31,-8(r1) ld r30,-16(r1) ld r29,-24(r1) ld r28,-32(r1) ld r27,-40(r1) ld r26,-48(r1) ld r25,-56(r1) blr .Lfirst_warm_up_done: lvx const1,0,r3 addi r3,r3,16 VPMSUMD(v8,v16,const1) VPMSUMD(v9,v17,const1) VPMSUMD(v10,v18,const1) VPMSUMD(v11,v19,const1) VPMSUMD(v12,v20,const1) VPMSUMD(v13,v21,const1) VPMSUMD(v14,v22,const1) VPMSUMD(v15,v23,const1) b .Lsecond_cool_down .Lshort: cmpdi r5,0 beq .Lzero addis r3,r2,.short_constants@toc@ha addi r3,r3,.short_constants@toc@l /* Calculate where in the constant table we need to start */ subfic r6,r5,256 add r3,r3,r6 /* How many 16 byte chunks? */ srdi r7,r5,4 mtctr r7 vxor v19,v19,v19 vxor v20,v20,v20 lvx v0,0,r4 lvx v16,0,r3 VPERM(v0,v0,v16,byteswap) vxor v0,v0,v8 /* xor in initial value */ VPMSUMW(v0,v0,v16) bdz .Lv0 lvx v1,off16,r4 lvx v17,off16,r3 VPERM(v1,v1,v17,byteswap) VPMSUMW(v1,v1,v17) bdz .Lv1 lvx v2,off32,r4 lvx v16,off32,r3 VPERM(v2,v2,v16,byteswap) VPMSUMW(v2,v2,v16) bdz .Lv2 lvx v3,off48,r4 lvx v17,off48,r3 VPERM(v3,v3,v17,byteswap) VPMSUMW(v3,v3,v17) bdz .Lv3 lvx v4,off64,r4 lvx v16,off64,r3 VPERM(v4,v4,v16,byteswap) VPMSUMW(v4,v4,v16) bdz .Lv4 lvx v5,off80,r4 lvx v17,off80,r3 VPERM(v5,v5,v17,byteswap) VPMSUMW(v5,v5,v17) bdz .Lv5 lvx v6,off96,r4 lvx v16,off96,r3 VPERM(v6,v6,v16,byteswap) VPMSUMW(v6,v6,v16) bdz .Lv6 lvx v7,off112,r4 lvx v17,off112,r3 VPERM(v7,v7,v17,byteswap) VPMSUMW(v7,v7,v17) bdz .Lv7 addi r3,r3,128 addi r4,r4,128 lvx v8,0,r4 lvx v16,0,r3 VPERM(v8,v8,v16,byteswap) VPMSUMW(v8,v8,v16) bdz .Lv8 lvx v9,off16,r4 lvx v17,off16,r3 VPERM(v9,v9,v17,byteswap) VPMSUMW(v9,v9,v17) bdz .Lv9 lvx v10,off32,r4 lvx v16,off32,r3 VPERM(v10,v10,v16,byteswap) VPMSUMW(v10,v10,v16) bdz .Lv10 lvx v11,off48,r4 lvx v17,off48,r3 VPERM(v11,v11,v17,byteswap) VPMSUMW(v11,v11,v17) bdz .Lv11 lvx v12,off64,r4 lvx v16,off64,r3 VPERM(v12,v12,v16,byteswap) VPMSUMW(v12,v12,v16) bdz .Lv12 lvx v13,off80,r4 lvx v17,off80,r3 VPERM(v13,v13,v17,byteswap) VPMSUMW(v13,v13,v17) bdz .Lv13 lvx v14,off96,r4 lvx v16,off96,r3 VPERM(v14,v14,v16,byteswap) VPMSUMW(v14,v14,v16) bdz .Lv14 lvx v15,off112,r4 lvx v17,off112,r3 VPERM(v15,v15,v17,byteswap) VPMSUMW(v15,v15,v17) .Lv15: vxor v19,v19,v15 .Lv14: vxor v20,v20,v14 .Lv13: vxor v19,v19,v13 .Lv12: vxor v20,v20,v12 .Lv11: vxor v19,v19,v11 .Lv10: vxor v20,v20,v10 .Lv9: vxor v19,v19,v9 .Lv8: vxor v20,v20,v8 .Lv7: vxor v19,v19,v7 .Lv6: vxor v20,v20,v6 .Lv5: vxor v19,v19,v5 .Lv4: vxor v20,v20,v4 .Lv3: vxor v19,v19,v3 .Lv2: vxor v20,v20,v2 .Lv1: vxor v19,v19,v1 .Lv0: vxor v20,v20,v0 vxor v0,v19,v20 b .Lbarrett_reduction .Lzero: mr r3,r10 b .Lout FUNC_END(CRC_FUNCTION_NAME) |