Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | // SPDX-License-Identifier: GPL-2.0 /* * arch/parisc/kernel/kprobes.c * * PA-RISC kprobes implementation * * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org> */ #include <linux/types.h> #include <linux/kprobes.h> #include <linux/slab.h> #include <asm/cacheflush.h> #include <asm/patch.h> DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); int __kprobes arch_prepare_kprobe(struct kprobe *p) { if ((unsigned long)p->addr & 3UL) return -EINVAL; p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) return -ENOMEM; memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); p->opcode = *p->addr; flush_insn_slot(p); return 0; } void __kprobes arch_remove_kprobe(struct kprobe *p) { if (!p->ainsn.insn) return; free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } void __kprobes arch_arm_kprobe(struct kprobe *p) { patch_text(p->addr, PARISC_KPROBES_BREAK_INSN); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { patch_text(p->addr, p->opcode); } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } static inline void __kprobes set_current_kprobe(struct kprobe *p) { __this_cpu_write(current_kprobe, p); } static void __kprobes setup_singlestep(struct kprobe *p, struct kprobe_ctlblk *kcb, struct pt_regs *regs) { kcb->iaoq[0] = regs->iaoq[0]; kcb->iaoq[1] = regs->iaoq[1]; regs->iaoq[0] = (unsigned long)p->ainsn.insn; mtctl(0, 0); regs->gr[0] |= PSW_R; } int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs) { struct kprobe *p; struct kprobe_ctlblk *kcb; preempt_disable(); kcb = get_kprobe_ctlblk(); p = get_kprobe((unsigned long *)regs->iaoq[0]); if (!p) { preempt_enable_no_resched(); return 0; } if (kprobe_running()) { /* * We have reentered the kprobe_handler, since another kprobe * was hit while within the handler, we save the original * kprobes and single step on the instruction of the new probe * without calling any user handlers to avoid recursive * kprobes. */ save_previous_kprobe(kcb); set_current_kprobe(p); kprobes_inc_nmissed_count(p); setup_singlestep(p, kcb, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* If we have no pre-handler or it returned 0, we continue with * normal processing. If we have a pre-handler and it returned * non-zero - which means user handler setup registers to exit * to another instruction, we must skip the single stepping. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { setup_singlestep(p, kcb, regs); kcb->kprobe_status = KPROBE_HIT_SS; } else { reset_current_kprobe(); preempt_enable_no_resched(); } return 1; } int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); struct kprobe *p = kprobe_running(); if (!p) return 0; if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4) return 0; /* restore back original saved kprobe variables and continue */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); return 1; } /* for absolute branch instructions we can copy iaoq_b. for relative * branch instructions we need to calculate the new address based on the * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without * modificationt because it's based on our ainsn.insn address. */ if (p->post_handler) p->post_handler(p, regs, 0); switch (regs->iir >> 26) { case 0x38: /* BE */ case 0x39: /* BE,L */ case 0x3a: /* BV */ case 0x3b: /* BVE */ /* for absolute branches, regs->iaoq[1] has already the right * address */ regs->iaoq[0] = kcb->iaoq[1]; break; default: regs->iaoq[1] = kcb->iaoq[0]; regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4; regs->iaoq[0] = kcb->iaoq[1]; break; } kcb->kprobe_status = KPROBE_HIT_SSDONE; reset_current_kprobe(); return 1; } static inline void kretprobe_trampoline(void) { asm volatile("nop"); asm volatile("nop"); } static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs); static struct kprobe trampoline_p = { .pre_handler = trampoline_probe_handler }; static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address = (unsigned long)trampoline_p.addr; kprobe_opcode_t *correct_ret_addr = NULL; INIT_HLIST_HEAD(&empty_rp); kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because multiple functions in the call path have * a return probe installed on them, and/or more than one return * probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; orig_ret_address = (unsigned long)ri->ret_addr; if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_assert(ri, orig_ret_address, trampoline_address); correct_ret_addr = ri->ret_addr; hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; orig_ret_address = (unsigned long)ri->ret_addr; if (ri->rp && ri->rp->handler) { __this_cpu_write(current_kprobe, &ri->rp->kp); get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; ri->ret_addr = correct_ret_addr; ri->rp->handler(ri, regs); __this_cpu_write(current_kprobe, NULL); } recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_hash_unlock(current, &flags); hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } instruction_pointer_set(regs, orig_ret_address); return 1; } void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)regs->gr[2]; /* Replace the return addr with trampoline addr. */ regs->gr[2] = (unsigned long)trampoline_p.addr; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { return p->addr == trampoline_p.addr; } int __init arch_init_kprobes(void) { trampoline_p.addr = (kprobe_opcode_t *) dereference_function_descriptor(kretprobe_trampoline); return register_kprobe(&trampoline_p); } |