Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | /* * Copyright (c) 2003-2014 Broadcom Corporation * All Rights Reserved * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the Broadcom * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/irq.h> #include <linux/bitops.h> #include <linux/pci_ids.h> #include <linux/nodemask.h> #include <asm/cpu.h> #include <asm/mipsregs.h> #include <asm/netlogic/common.h> #include <asm/netlogic/haldefs.h> #include <asm/netlogic/mips-extns.h> #include <asm/netlogic/xlp-hal/xlp.h> #include <asm/netlogic/xlp-hal/iomap.h> #define SATA_CTL 0x0 #define SATA_STATUS 0x1 /* Status Reg */ #define SATA_INT 0x2 /* Interrupt Reg */ #define SATA_INT_MASK 0x3 /* Interrupt Mask Reg */ #define SATA_BIU_TIMEOUT 0x4 #define AXIWRSPERRLOG 0x5 #define AXIRDSPERRLOG 0x6 #define BiuTimeoutLow 0x7 #define BiuTimeoutHi 0x8 #define BiuSlvErLow 0x9 #define BiuSlvErHi 0xa #define IO_CONFIG_SWAP_DIS 0xb #define CR_REG_TIMER 0xc #define CORE_ID 0xd #define AXI_SLAVE_OPT1 0xe #define PHY_MEM_ACCESS 0xf #define PHY0_CNTRL 0x10 #define PHY0_STAT 0x11 #define PHY0_RX_ALIGN 0x12 #define PHY0_RX_EQ_LO 0x13 #define PHY0_RX_EQ_HI 0x14 #define PHY0_BIST_LOOP 0x15 #define PHY1_CNTRL 0x16 #define PHY1_STAT 0x17 #define PHY1_RX_ALIGN 0x18 #define PHY1_RX_EQ_LO 0x19 #define PHY1_RX_EQ_HI 0x1a #define PHY1_BIST_LOOP 0x1b #define RdExBase 0x1c #define RdExLimit 0x1d #define CacheAllocBase 0x1e #define CacheAllocLimit 0x1f #define BiuSlaveCmdGstNum 0x20 /*SATA_CTL Bits */ #define SATA_RST_N BIT(0) /* Active low reset sata_core phy */ #define SataCtlReserve0 BIT(1) #define M_CSYSREQ BIT(2) /* AXI master low power, not used */ #define S_CSYSREQ BIT(3) /* AXI slave low power, not used */ #define P0_CP_DET BIT(8) /* Reserved, bring in from pad */ #define P0_MP_SW BIT(9) /* Mech Switch */ #define P0_DISABLE BIT(10) /* disable p0 */ #define P0_ACT_LED_EN BIT(11) /* Active LED enable */ #define P0_IRST_HARD_SYNTH BIT(12) /* PHY hard synth reset */ #define P0_IRST_HARD_TXRX BIT(13) /* PHY lane hard reset */ #define P0_IRST_POR BIT(14) /* PHY power on reset*/ #define P0_IPDTXL BIT(15) /* PHY Tx lane dis/power down */ #define P0_IPDRXL BIT(16) /* PHY Rx lane dis/power down */ #define P0_IPDIPDMSYNTH BIT(17) /* PHY synthesizer dis/porwer down */ #define P0_CP_POD_EN BIT(18) /* CP_POD enable */ #define P0_AT_BYPASS BIT(19) /* P0 address translation by pass */ #define P1_CP_DET BIT(20) /* Reserved,Cold Detect */ #define P1_MP_SW BIT(21) /* Mech Switch */ #define P1_DISABLE BIT(22) /* disable p1 */ #define P1_ACT_LED_EN BIT(23) /* Active LED enable */ #define P1_IRST_HARD_SYNTH BIT(24) /* PHY hard synth reset */ #define P1_IRST_HARD_TXRX BIT(25) /* PHY lane hard reset */ #define P1_IRST_POR BIT(26) /* PHY power on reset*/ #define P1_IPDTXL BIT(27) /* PHY Tx lane dis/porwer down */ #define P1_IPDRXL BIT(28) /* PHY Rx lane dis/porwer down */ #define P1_IPDIPDMSYNTH BIT(29) /* PHY synthesizer dis/porwer down */ #define P1_CP_POD_EN BIT(30) #define P1_AT_BYPASS BIT(31) /* P1 address translation by pass */ /* Status register */ #define M_CACTIVE BIT(0) /* m_cactive, not used */ #define S_CACTIVE BIT(1) /* s_cactive, not used */ #define P0_PHY_READY BIT(8) /* phy is ready */ #define P0_CP_POD BIT(9) /* Cold PowerOn */ #define P0_SLUMBER BIT(10) /* power mode slumber */ #define P0_PATIAL BIT(11) /* power mode patial */ #define P0_PHY_SIG_DET BIT(12) /* phy dignal detect */ #define P0_PHY_CALI BIT(13) /* phy calibration done */ #define P1_PHY_READY BIT(16) /* phy is ready */ #define P1_CP_POD BIT(17) /* Cold PowerOn */ #define P1_SLUMBER BIT(18) /* power mode slumber */ #define P1_PATIAL BIT(19) /* power mode patial */ #define P1_PHY_SIG_DET BIT(20) /* phy dignal detect */ #define P1_PHY_CALI BIT(21) /* phy calibration done */ /* SATA CR_REG_TIMER bits */ #define CR_TIME_SCALE (0x1000 << 0) /* SATA PHY specific registers start and end address */ #define RXCDRCALFOSC0 0x0065 #define CALDUTY 0x006e #define RXDPIF 0x8065 #define PPMDRIFTMAX_HI 0x80A4 #define nlm_read_sata_reg(b, r) nlm_read_reg(b, r) #define nlm_write_sata_reg(b, r, v) nlm_write_reg(b, r, v) #define nlm_get_sata_pcibase(node) \ nlm_pcicfg_base(XLP9XX_IO_SATA_OFFSET(node)) #define nlm_get_sata_regbase(node) \ (nlm_get_sata_pcibase(node) + 0x100) /* SATA PHY config for register block 1 0x0065 .. 0x006e */ static const u8 sata_phy_config1[] = { 0xC9, 0xC9, 0x07, 0x07, 0x18, 0x18, 0x01, 0x01, 0x22, 0x00 }; /* SATA PHY config for register block 2 0x8065 .. 0x80A4 */ static const u8 sata_phy_config2[] = { 0xAA, 0x00, 0x4C, 0xC9, 0xC9, 0x07, 0x07, 0x18, 0x18, 0x05, 0x0C, 0x10, 0x00, 0x10, 0x00, 0xFF, 0xCF, 0xF7, 0xE1, 0xF5, 0xFD, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5, 0xFD, 0xFD, 0xF5, 0xF5, 0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5, 0xFD, 0xFD, 0xF5, 0xF5, 0xFF, 0xFF, 0xFF, 0xF5, 0x3F, 0x00, 0x32, 0x00, 0x03, 0x01, 0x05, 0x05, 0x04, 0x00, 0x00, 0x08, 0x04, 0x00, 0x00, 0x04, }; const int sata_phy_debug = 0; /* set to verify PHY writes */ static void sata_clear_glue_reg(u64 regbase, u32 off, u32 bit) { u32 reg_val; reg_val = nlm_read_sata_reg(regbase, off); nlm_write_sata_reg(regbase, off, (reg_val & ~bit)); } static void sata_set_glue_reg(u64 regbase, u32 off, u32 bit) { u32 reg_val; reg_val = nlm_read_sata_reg(regbase, off); nlm_write_sata_reg(regbase, off, (reg_val | bit)); } static void write_phy_reg(u64 regbase, u32 addr, u32 physel, u8 data) { nlm_write_sata_reg(regbase, PHY_MEM_ACCESS, (1u << 31) | (physel << 24) | (data << 16) | addr); udelay(850); } static u8 read_phy_reg(u64 regbase, u32 addr, u32 physel) { u32 val; nlm_write_sata_reg(regbase, PHY_MEM_ACCESS, (0 << 31) | (physel << 24) | (0 << 16) | addr); udelay(850); val = nlm_read_sata_reg(regbase, PHY_MEM_ACCESS); return (val >> 16) & 0xff; } static void config_sata_phy(u64 regbase) { u32 port, i, reg; u8 val; for (port = 0; port < 2; port++) { for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++) write_phy_reg(regbase, reg, port, sata_phy_config1[i]); for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++) write_phy_reg(regbase, reg, port, sata_phy_config2[i]); /* Fix for PHY link up failures at lower temperatures */ write_phy_reg(regbase, 0x800F, port, 0x1f); val = read_phy_reg(regbase, 0x0029, port); write_phy_reg(regbase, 0x0029, port, val | (0x7 << 1)); val = read_phy_reg(regbase, 0x0056, port); write_phy_reg(regbase, 0x0056, port, val & ~(1 << 3)); val = read_phy_reg(regbase, 0x0018, port); write_phy_reg(regbase, 0x0018, port, val & ~(0x7 << 0)); } } static void check_phy_register(u64 regbase, u32 addr, u32 physel, u8 xdata) { u8 data; data = read_phy_reg(regbase, addr, physel); pr_info("PHY read addr = 0x%x physel = %d data = 0x%x %s\n", addr, physel, data, data == xdata ? "TRUE" : "FALSE"); } static void verify_sata_phy_config(u64 regbase) { u32 port, i, reg; for (port = 0; port < 2; port++) { for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++) check_phy_register(regbase, reg, port, sata_phy_config1[i]); for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++) check_phy_register(regbase, reg, port, sata_phy_config2[i]); } } static void nlm_sata_firmware_init(int node) { u32 reg_val; u64 regbase; int n; pr_info("Initializing XLP9XX On-chip AHCI...\n"); regbase = nlm_get_sata_regbase(node); /* Reset port0 */ sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_POR); sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX); sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH); sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDTXL); sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDRXL); sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH); /* port1 */ sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_POR); sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX); sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH); sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDTXL); sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDRXL); sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH); udelay(300); /* Set PHY */ sata_set_glue_reg(regbase, SATA_CTL, P0_IPDTXL); sata_set_glue_reg(regbase, SATA_CTL, P0_IPDRXL); sata_set_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH); sata_set_glue_reg(regbase, SATA_CTL, P1_IPDTXL); sata_set_glue_reg(regbase, SATA_CTL, P1_IPDRXL); sata_set_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH); udelay(1000); sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_POR); udelay(1000); sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_POR); udelay(1000); /* setup PHY */ config_sata_phy(regbase); if (sata_phy_debug) verify_sata_phy_config(regbase); udelay(1000); sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX); sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH); sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX); sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH); udelay(300); /* Override reset in serial PHY mode */ sata_set_glue_reg(regbase, CR_REG_TIMER, CR_TIME_SCALE); /* Set reset SATA */ sata_set_glue_reg(regbase, SATA_CTL, SATA_RST_N); sata_set_glue_reg(regbase, SATA_CTL, M_CSYSREQ); sata_set_glue_reg(regbase, SATA_CTL, S_CSYSREQ); pr_debug("Waiting for PHYs to come up.\n"); n = 10000; do { reg_val = nlm_read_sata_reg(regbase, SATA_STATUS); if ((reg_val & P1_PHY_READY) && (reg_val & P0_PHY_READY)) break; udelay(10); } while (--n > 0); if (reg_val & P0_PHY_READY) pr_info("PHY0 is up.\n"); else pr_info("PHY0 is down.\n"); if (reg_val & P1_PHY_READY) pr_info("PHY1 is up.\n"); else pr_info("PHY1 is down.\n"); pr_info("XLP AHCI Init Done.\n"); } static int __init nlm_ahci_init(void) { int node; if (!cpu_is_xlp9xx()) return 0; for (node = 0; node < NLM_NR_NODES; node++) if (nlm_node_present(node)) nlm_sata_firmware_init(node); return 0; } static void nlm_sata_intr_ack(struct irq_data *data) { u64 regbase; u32 val; int node; node = data->irq / NLM_IRQS_PER_NODE; regbase = nlm_get_sata_regbase(node); val = nlm_read_sata_reg(regbase, SATA_INT); sata_set_glue_reg(regbase, SATA_INT, val); } static void nlm_sata_fixup_bar(struct pci_dev *dev) { dev->resource[5] = dev->resource[0]; memset(&dev->resource[0], 0, sizeof(dev->resource[0])); } static void nlm_sata_fixup_final(struct pci_dev *dev) { u32 val; u64 regbase; int node; /* Find end bridge function to find node */ node = xlp_socdev_to_node(dev); regbase = nlm_get_sata_regbase(node); /* clear pending interrupts and then enable them */ val = nlm_read_sata_reg(regbase, SATA_INT); sata_set_glue_reg(regbase, SATA_INT, val); /* Enable only the core interrupt */ sata_set_glue_reg(regbase, SATA_INT_MASK, 0x1); dev->irq = nlm_irq_to_xirq(node, PIC_SATA_IRQ); nlm_set_pic_extra_ack(node, PIC_SATA_IRQ, nlm_sata_intr_ack); } arch_initcall(nlm_ahci_init); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA, nlm_sata_fixup_bar); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA, nlm_sata_fixup_final); |