Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // SPDX-License-Identifier: GPL-2.0-only /* * alternative runtime patching * inspired by the x86 version * * Copyright (C) 2014 ARM Ltd. */ #define pr_fmt(fmt) "alternatives: " fmt #include <linux/init.h> #include <linux/cpu.h> #include <asm/cacheflush.h> #include <asm/alternative.h> #include <asm/cpufeature.h> #include <asm/insn.h> #include <asm/sections.h> #include <linux/stop_machine.h> #define __ALT_PTR(a,f) ((void *)&(a)->f + (a)->f) #define ALT_ORIG_PTR(a) __ALT_PTR(a, orig_offset) #define ALT_REPL_PTR(a) __ALT_PTR(a, alt_offset) static int all_alternatives_applied; static DECLARE_BITMAP(applied_alternatives, ARM64_NCAPS); struct alt_region { struct alt_instr *begin; struct alt_instr *end; }; bool alternative_is_applied(u16 cpufeature) { if (WARN_ON(cpufeature >= ARM64_NCAPS)) return false; return test_bit(cpufeature, applied_alternatives); } /* * Check if the target PC is within an alternative block. */ static bool branch_insn_requires_update(struct alt_instr *alt, unsigned long pc) { unsigned long replptr; if (kernel_text_address(pc)) return true; replptr = (unsigned long)ALT_REPL_PTR(alt); if (pc >= replptr && pc <= (replptr + alt->alt_len)) return false; /* * Branching into *another* alternate sequence is doomed, and * we're not even trying to fix it up. */ BUG(); } #define align_down(x, a) ((unsigned long)(x) & ~(((unsigned long)(a)) - 1)) static u32 get_alt_insn(struct alt_instr *alt, __le32 *insnptr, __le32 *altinsnptr) { u32 insn; insn = le32_to_cpu(*altinsnptr); if (aarch64_insn_is_branch_imm(insn)) { s32 offset = aarch64_get_branch_offset(insn); unsigned long target; target = (unsigned long)altinsnptr + offset; /* * If we're branching inside the alternate sequence, * do not rewrite the instruction, as it is already * correct. Otherwise, generate the new instruction. */ if (branch_insn_requires_update(alt, target)) { offset = target - (unsigned long)insnptr; insn = aarch64_set_branch_offset(insn, offset); } } else if (aarch64_insn_is_adrp(insn)) { s32 orig_offset, new_offset; unsigned long target; /* * If we're replacing an adrp instruction, which uses PC-relative * immediate addressing, adjust the offset to reflect the new * PC. adrp operates on 4K aligned addresses. */ orig_offset = aarch64_insn_adrp_get_offset(insn); target = align_down(altinsnptr, SZ_4K) + orig_offset; new_offset = target - align_down(insnptr, SZ_4K); insn = aarch64_insn_adrp_set_offset(insn, new_offset); } else if (aarch64_insn_uses_literal(insn)) { /* * Disallow patching unhandled instructions using PC relative * literal addresses */ BUG(); } return insn; } static void patch_alternative(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { __le32 *replptr; int i; replptr = ALT_REPL_PTR(alt); for (i = 0; i < nr_inst; i++) { u32 insn; insn = get_alt_insn(alt, origptr + i, replptr + i); updptr[i] = cpu_to_le32(insn); } } /* * We provide our own, private D-cache cleaning function so that we don't * accidentally call into the cache.S code, which is patched by us at * runtime. */ static void clean_dcache_range_nopatch(u64 start, u64 end) { u64 cur, d_size, ctr_el0; ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); d_size = 4 << cpuid_feature_extract_unsigned_field(ctr_el0, CTR_DMINLINE_SHIFT); cur = start & ~(d_size - 1); do { /* * We must clean+invalidate to the PoC in order to avoid * Cortex-A53 errata 826319, 827319, 824069 and 819472 * (this corresponds to ARM64_WORKAROUND_CLEAN_CACHE) */ asm volatile("dc civac, %0" : : "r" (cur) : "memory"); } while (cur += d_size, cur < end); } static void __apply_alternatives(void *alt_region, bool is_module, unsigned long *feature_mask) { struct alt_instr *alt; struct alt_region *region = alt_region; __le32 *origptr, *updptr; alternative_cb_t alt_cb; for (alt = region->begin; alt < region->end; alt++) { int nr_inst; if (!test_bit(alt->cpufeature, feature_mask)) continue; /* Use ARM64_CB_PATCH as an unconditional patch */ if (alt->cpufeature < ARM64_CB_PATCH && !cpus_have_cap(alt->cpufeature)) continue; if (alt->cpufeature == ARM64_CB_PATCH) BUG_ON(alt->alt_len != 0); else BUG_ON(alt->alt_len != alt->orig_len); pr_info_once("patching kernel code\n"); origptr = ALT_ORIG_PTR(alt); updptr = is_module ? origptr : lm_alias(origptr); nr_inst = alt->orig_len / AARCH64_INSN_SIZE; if (alt->cpufeature < ARM64_CB_PATCH) alt_cb = patch_alternative; else alt_cb = ALT_REPL_PTR(alt); alt_cb(alt, origptr, updptr, nr_inst); if (!is_module) { clean_dcache_range_nopatch((u64)origptr, (u64)(origptr + nr_inst)); } } /* * The core module code takes care of cache maintenance in * flush_module_icache(). */ if (!is_module) { dsb(ish); __flush_icache_all(); isb(); /* Ignore ARM64_CB bit from feature mask */ bitmap_or(applied_alternatives, applied_alternatives, feature_mask, ARM64_NCAPS); bitmap_and(applied_alternatives, applied_alternatives, cpu_hwcaps, ARM64_NCAPS); } } /* * We might be patching the stop_machine state machine, so implement a * really simple polling protocol here. */ static int __apply_alternatives_multi_stop(void *unused) { struct alt_region region = { .begin = (struct alt_instr *)__alt_instructions, .end = (struct alt_instr *)__alt_instructions_end, }; /* We always have a CPU 0 at this point (__init) */ if (smp_processor_id()) { while (!READ_ONCE(all_alternatives_applied)) cpu_relax(); isb(); } else { DECLARE_BITMAP(remaining_capabilities, ARM64_NPATCHABLE); bitmap_complement(remaining_capabilities, boot_capabilities, ARM64_NPATCHABLE); BUG_ON(all_alternatives_applied); __apply_alternatives(®ion, false, remaining_capabilities); /* Barriers provided by the cache flushing */ WRITE_ONCE(all_alternatives_applied, 1); } return 0; } void __init apply_alternatives_all(void) { /* better not try code patching on a live SMP system */ stop_machine(__apply_alternatives_multi_stop, NULL, cpu_online_mask); } /* * This is called very early in the boot process (directly after we run * a feature detect on the boot CPU). No need to worry about other CPUs * here. */ void __init apply_boot_alternatives(void) { struct alt_region region = { .begin = (struct alt_instr *)__alt_instructions, .end = (struct alt_instr *)__alt_instructions_end, }; /* If called on non-boot cpu things could go wrong */ WARN_ON(smp_processor_id() != 0); __apply_alternatives(®ion, false, &boot_capabilities[0]); } #ifdef CONFIG_MODULES void apply_alternatives_module(void *start, size_t length) { struct alt_region region = { .begin = start, .end = start + length, }; DECLARE_BITMAP(all_capabilities, ARM64_NPATCHABLE); bitmap_fill(all_capabilities, ARM64_NPATCHABLE); __apply_alternatives(®ion, true, &all_capabilities[0]); } #endif |